Skip to main content

Practical Statistics For Data Scientists

Download Practical Statistics For Data Scientists Full eBooks in PDF, EPUB, and kindle. Practical Statistics For Data Scientists is one my favorite book and give us some inspiration, very enjoy to read. you could read this book anywhere anytime directly from your device. This site is like a library, Use search box in the widget to get ebook that you want.

Practical Statistics for Data Scientists

Practical Statistics for Data Scientists Book
Author : Peter Bruce,Andrew Bruce
Publisher : "O'Reilly Media, Inc."
Release : 2017-05-10
ISBN : 1491952911
File Size : 38,5 Mb
Language : Ennglish

GET BOOK

Practical Statistics for Data Scientists Book PDF/Epub Download

Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data

Practical Statistics for Data Scientists

Practical Statistics for Data Scientists Book
Author : Peter Bruce,Andrew Bruce
Publisher : "O'Reilly Media, Inc."
Release : 2017-05-10
ISBN : 1491952938
File Size : 25,6 Mb
Language : Ennglish

GET BOOK

Practical Statistics for Data Scientists Book PDF/Epub Download

Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data

Practical Statistics for Data Scientists

Practical Statistics for Data Scientists Book
Author : Peter Bruce,Andrew Bruce,Peter Gedeck
Publisher : O'Reilly Media
Release : 2020-04-10
ISBN : 1492072915
File Size : 45,9 Mb
Language : Ennglish

GET BOOK

Practical Statistics for Data Scientists Book PDF/Epub Download

Statistical methods are a key part of data science, yet few data scientists have formal statistical training. Courses and books on basic statistics rarely cover the topic from a data science perspective. The second edition of this popular guide adds comprehensive examples in Python, provides practical guidance on applying statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what’s important and what’s not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R or Python programming languages and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher-quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that "learn" from data Unsupervised learning methods for extracting meaning from unlabeled data

Foundations of Statistics for Data Scientists

Foundations of Statistics for Data Scientists Book
Author : Alan Agresti,Maria Kateri
Publisher : CRC Press
Release : 2021-11-22
ISBN : 1000462919
File Size : 39,5 Mb
Language : Ennglish

GET BOOK

Foundations of Statistics for Data Scientists Book PDF/Epub Download

Foundations of Statistics for Data Scientists: With R and Python is designed as a textbook for a one- or two-term introduction to mathematical statistics for students training to become data scientists. It is an in-depth presentation of the topics in statistical science with which any data scientist should be familiar, including probability distributions, descriptive and inferential statistical methods, and linear modeling. The book assumes knowledge of basic calculus, so the presentation can focus on "why it works" as well as "how to do it." Compared to traditional "mathematical statistics" textbooks, however, the book has less emphasis on probability theory and more emphasis on using software to implement statistical methods and to conduct simulations to illustrate key concepts. All statistical analyses in the book use R software, with an appendix showing the same analyses with Python. The book also introduces modern topics that do not normally appear in mathematical statistics texts but are highly relevant for data scientists, such as Bayesian inference, generalized linear models for non-normal responses (e.g., logistic regression and Poisson loglinear models), and regularized model fitting. The nearly 500 exercises are grouped into "Data Analysis and Applications" and "Methods and Concepts." Appendices introduce R and Python and contain solutions for odd-numbered exercises. The book's website has expanded R, Python, and Matlab appendices and all data sets from the examples and exercises.

Doing Data Science

Doing Data Science Book
Author : Cathy O'Neil,Rachel Schutt
Publisher : "O'Reilly Media, Inc."
Release : 2013-10-09
ISBN : 144936389X
File Size : 54,5 Mb
Language : Ennglish

GET BOOK

Doing Data Science Book PDF/Epub Download

Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.

Applied Wavelet Analysis with S PLUS

Applied Wavelet Analysis with S PLUS Book
Author : Andrew Bruce,Hong-Ye Gao
Publisher : Springer Science & Business Media
Release : 1996-06-20
ISBN : 9780387947143
File Size : 37,8 Mb
Language : Ennglish

GET BOOK

Applied Wavelet Analysis with S PLUS Book PDF/Epub Download

Using a visual data analysis approach, wavelet concepts are explained in a way that is intuitive and easy to understand. Furthermore, in addition to wavelets, a whole range of related signal processing techniques such as wavelet packets, local cosine analysis, and matching pursuits are covered, and applications of wavelet analysis are illustrated -including nonparametric function estimation, digital image compression, and time-frequency signal analysis. This book and software package is intended for a broad range of data analysts, scientists, and engineers. While most textbooks on the subject presuppose advanced training in mathematics, this book merely requires that readers be familiar with calculus and linear algebra at the undergraduate level.

Statistics for Data Scientists

Statistics for Data Scientists Book
Author : Maurits Kaptein,Edwin van den Heuvel
Publisher : Springer Nature
Release : 2022-02-02
ISBN : 3030105318
File Size : 48,9 Mb
Language : Ennglish

GET BOOK

Statistics for Data Scientists Book PDF/Epub Download

This book provides an undergraduate introduction to analysing data for data science, computer science, and quantitative social science students. It uniquely combines a hands-on approach to data analysis – supported by numerous real data examples and reusable [R] code – with a rigorous treatment of probability and statistical principles. Where contemporary undergraduate textbooks in probability theory or statistics often miss applications and an introductory treatment of modern methods (bootstrapping, Bayes, etc.), and where applied data analysis books often miss a rigorous theoretical treatment, this book provides an accessible but thorough introduction into data analysis, using statistical methods combining the two viewpoints. The book further focuses on methods for dealing with large data-sets and streaming-data and hence provides a single-course introduction of statistical methods for data science.

Practical Statistics for the Analytical Scientist

Practical Statistics for the Analytical Scientist Book
Author : Peter Bedson,Trevor J Duguid Farrant
Publisher : Royal Society of Chemistry
Release : 2021-04-09
ISBN : 1839164433
File Size : 29,5 Mb
Language : Ennglish

GET BOOK

Practical Statistics for the Analytical Scientist Book PDF/Epub Download

Analytical chemists must use a range of statistical tools in their treatment of experimental data to obtain reliable results. Practical Statistics for the Analytical Scientist is a manual designed to help them negotiate the daunting specialist terminology and symbols. Prepared in conjunction with the Department of Trade and Industry's Valid Analytical Measurement (VAM) programme, this volume covers the basic statistics needed in the laboratory. It describes the statistical procedures that are most likely to be required including summary and descriptive statistics, calibration, outlier testing, analysis of variance and basic quality control procedures. To improve understanding, many examples provide the user with material for consolidation and practice. The fully worked answers are given both to check the correct application of the procedures and to provide a template for future problems. Practical Statistics for the Analytical Scientist will be welcomed by practising analytical chemists as an important reference for day to day statistics in analytical chemistry.

Practical Data Science with R

Practical Data Science with R Book
Author : Nina Zumel,John Mount
Publisher : Manning Publications
Release : 2014-04-10
ISBN : 9781617291562
File Size : 49,7 Mb
Language : Ennglish

GET BOOK

Practical Data Science with R Book PDF/Epub Download

Summary Practical Data Science with R lives up to its name. It explains basic principles without the theoretical mumbo-jumbo and jumps right to the real use cases you'll face as you collect, curate, and analyze the data crucial to the success of your business. You'll apply the R programming language and statistical analysis techniques to carefully explained examples based in marketing, business intelligence, and decision support. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Business analysts and developers are increasingly collecting, curating, analyzing, and reporting on crucial business data. The R language and its associated tools provide a straightforward way to tackle day-to-day data science tasks without a lot of academic theory or advanced mathematics. Practical Data Science with R shows you how to apply the R programming language and useful statistical techniques to everyday business situations. Using examples from marketing, business intelligence, and decision support, it shows you how to design experiments (such as A/B tests), build predictive models, and present results to audiences of all levels. This book is accessible to readers without a background in data science. Some familiarity with basic statistics, R, or another scripting language is assumed. What's Inside Data science for the business professional Statistical analysis using the R language Project lifecycle, from planning to delivery Numerous instantly familiar use cases Keys to effective data presentations About the Authors Nina Zumel and John Mount are cofounders of a San Francisco-based data science consulting firm. Both hold PhDs from Carnegie Mellon and blog on statistics, probability, and computer science at win-vector.com. Table of Contents PART 1 INTRODUCTION TO DATA SCIENCE The data science process Loading data into R Exploring data Managing data PART 2 MODELING METHODS Choosing and evaluating models Memorization methods Linear and logistic regression Unsupervised methods Exploring advanced methods PART 3 DELIVERING RESULTS Documentation and deployment Producing effective presentations

Data Mining for Business Analytics

Data Mining for Business Analytics Book
Author : Galit Shmueli,Peter C. Bruce,Nitin R. Patel
Publisher : John Wiley & Sons
Release : 2016-04-18
ISBN : 1118729277
File Size : 50,8 Mb
Language : Ennglish

GET BOOK

Data Mining for Business Analytics Book PDF/Epub Download

An applied approach to data mining and predictive analytics with clear exposition, hands-on exercises, and real-life case studies. Readers will work with all of the standard data mining methods using the Microsoft® Office Excel® add-in XLMiner® to develop predictive models and learn how to obtain business value from Big Data. Featuring updated topical coverage on text mining, social network analysis, collaborative filtering, ensemble methods, uplift modeling and more, the Third Edition also includes: Real-world examples to build a theoretical and practical understanding of key data mining methods End-of-chapter exercises that help readers better understand the presented material Data-rich case studies to illustrate various applications of data mining techniques Completely new chapters on social network analysis and text mining A companion site with additional data sets, instructors material that include solutions to exercises and case studies, and Microsoft PowerPoint® slides https://www.dataminingbook.com Free 140-day license to use XLMiner for Education software Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses as well as professional programs on data mining, predictive modeling, and Big Data analytics. The new edition is also a unique reference for analysts, researchers, and practitioners working with predictive analytics in the fields of business, finance, marketing, computer science, and information technology. Praise for the Second Edition "…full of vivid and thought-provoking anecdotes... needs to be read by anyone with a serious interest in research and marketing."– Research Magazine "Shmueli et al. have done a wonderful job in presenting the field of data mining - a welcome addition to the literature." – ComputingReviews.com "Excellent choice for business analysts...The book is a perfect fit for its intended audience." – Keith McCormick, Consultant and Author of SPSS Statistics For Dummies, Third Edition and SPSS Statistics for Data Analysis and Visualization Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, The Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 journal articles, books, textbooks and book chapters. Peter C. Bruce is President and Founder of the Institute for Statistics Education at www.statistics.com. He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective, also published by Wiley. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American Statistical Association, Dr. Patel has also served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad for 15 years.

Business Data Science Combining Machine Learning and Economics to Optimize Automate and Accelerate Business Decisions

Business Data Science  Combining Machine Learning and Economics to Optimize  Automate  and Accelerate Business Decisions Book
Author : Matt Taddy
Publisher : McGraw Hill Professional
Release : 2019-08-23
ISBN : 1260452786
File Size : 52,9 Mb
Language : Ennglish

GET BOOK

Business Data Science Combining Machine Learning and Economics to Optimize Automate and Accelerate Business Decisions Book PDF/Epub Download

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Use machine learning to understand your customers, frame decisions, and drive value The business analytics world has changed, and Data Scientists are taking over. Business Data Science takes you through the steps of using machine learning to implement best-in-class business data science. Whether you are a business leader with a desire to go deep on data, or an engineer who wants to learn how to apply Machine Learning to business problems, you’ll find the information, insight, and tools you need to flourish in today’s data-driven economy. You’ll learn how to: •Use the key building blocks of Machine Learning: sparse regularization, out-of-sample validation, and latent factor and topic modeling•Understand how use ML tools in real world business problems, where causation matters more that correlation•Solve data science programs by scripting in the R programming language Today’s business landscape is driven by data and constantly shifting. Companies live and die on their ability to make and implement the right decisions quickly and effectively. Business Data Science is about doing data science right. It’s about the exciting things being done around Big Data to run a flourishing business. It’s about the precepts, principals, and best practices that you need know for best-in-class business data science.

Practical Data Science with Python

Practical Data Science with Python Book
Author : Nathan George
Publisher : Packt Publishing Ltd
Release : 2021-09-30
ISBN : 1801076650
File Size : 41,6 Mb
Language : Ennglish

GET BOOK

Practical Data Science with Python Book PDF/Epub Download

Learn to effectively manage data and execute data science projects from start to finish using Python Key FeaturesUnderstand and utilize data science tools in Python, such as specialized machine learning algorithms and statistical modelingBuild a strong data science foundation with the best data science tools available in PythonAdd value to yourself, your organization, and society by extracting actionable insights from raw dataBook Description Practical Data Science with Python teaches you core data science concepts, with real-world and realistic examples, and strengthens your grip on the basic as well as advanced principles of data preparation and storage, statistics, probability theory, machine learning, and Python programming, helping you build a solid foundation to gain proficiency in data science. The book starts with an overview of basic Python skills and then introduces foundational data science techniques, followed by a thorough explanation of the Python code needed to execute the techniques. You'll understand the code by working through the examples. The code has been broken down into small chunks (a few lines or a function at a time) to enable thorough discussion. As you progress, you will learn how to perform data analysis while exploring the functionalities of key data science Python packages, including pandas, SciPy, and scikit-learn. Finally, the book covers ethics and privacy concerns in data science and suggests resources for improving data science skills, as well as ways to stay up to date on new data science developments. By the end of the book, you should be able to comfortably use Python for basic data science projects and should have the skills to execute the data science process on any data source. What you will learnUse Python data science packages effectivelyClean and prepare data for data science work, including feature engineering and feature selectionData modeling, including classic statistical models (such as t-tests), and essential machine learning algorithms, such as random forests and boosted modelsEvaluate model performanceCompare and understand different machine learning methodsInteract with Excel spreadsheets through PythonCreate automated data science reports through PythonGet to grips with text analytics techniquesWho this book is for The book is intended for beginners, including students starting or about to start a data science, analytics, or related program (e.g. Bachelor’s, Master’s, bootcamp, online courses), recent college graduates who want to learn new skills to set them apart in the job market, professionals who want to learn hands-on data science techniques in Python, and those who want to shift their career to data science. The book requires basic familiarity with Python. A "getting started with Python" section has been included to get complete novices up to speed.

Practical Statistics for Engineers and Scientists

Practical Statistics for Engineers and Scientists Book
Author : Nicholas P. Cheremisinoff,Louise Ferrante
Publisher : CRC Press
Release : 1987-11-26
ISBN : 9780877625056
File Size : 49,6 Mb
Language : Ennglish

GET BOOK

Practical Statistics for Engineers and Scientists Book PDF/Epub Download

This book provides direction in constructing regression routines that can be used with worksheet software on personal computers. The book lists useful references for those readers who desire more in-depth understanding of the mathematical bases, and is helpful for science and engineering students.

Statistics for Health Data Science

Statistics for Health Data Science Book
Author : Ruth Etzioni,Micha Mandel,Roman Gulati
Publisher : Springer Nature
Release : 2021-01-04
ISBN : 3030598896
File Size : 53,6 Mb
Language : Ennglish

GET BOOK

Statistics for Health Data Science Book PDF/Epub Download

Students and researchers in the health sciences are faced with greater opportunity and challenge than ever before. The opportunity stems from the explosion in publicly available data that simultaneously informs and inspires new avenues of investigation. The challenge is that the analytic tools required go far beyond the standard methods and models of basic statistics. This textbook aims to equip health care researchers with the most important elements of a modern health analytics toolkit, drawing from the fields of statistics, health econometrics, and data science. This textbook is designed to overcome students’ anxiety about data and statistics and to help them to become confident users of appropriate analytic methods for health care research studies. Methods are presented organically, with new material building naturally on what has come before. Each technique is motivated by a topical research question, explained in non-technical terms, and accompanied by engaging explanations and examples. In this way, the authors cultivate a deep (“organic”) understanding of a range of analytic techniques, their assumptions and data requirements, and their advantages and limitations. They illustrate all lessons via analyses of real data from a variety of publicly available databases, addressing relevant research questions and comparing findings to those of published studies. Ultimately, this textbook is designed to cultivate health services researchers that are thoughtful and well informed about health data science, rather than data analysts. This textbook differs from the competition in its unique blend of methods and its determination to ensure that readers gain an understanding of how, when, and why to apply them. It provides the public health researcher with a way to think analytically about scientific questions, and it offers well-founded guidance for pairing data with methods for valid analysis. Readers should feel emboldened to tackle analysis of real public datasets using traditional statistical models, health econometrics methods, and even predictive algorithms. Accompanying code and data sets are provided in an author site: https://roman-gulati.github.io/statistics-for-health-data-science/

Probability and Statistics for Data Science

Probability and Statistics for Data Science Book
Author : Norman Matloff
Publisher : CRC Press
Release : 2019-06-21
ISBN : 0429687117
File Size : 43,6 Mb
Language : Ennglish

GET BOOK

Probability and Statistics for Data Science Book PDF/Epub Download

Probability and Statistics for Data Science: Math + R + Data covers "math stat"—distributions, expected value, estimation etc.—but takes the phrase "Data Science" in the title quite seriously: * Real datasets are used extensively. * All data analysis is supported by R coding. * Includes many Data Science applications, such as PCA, mixture distributions, random graph models, Hidden Markov models, linear and logistic regression, and neural networks. * Leads the student to think critically about the "how" and "why" of statistics, and to "see the big picture." * Not "theorem/proof"-oriented, but concepts and models are stated in a mathematically precise manner. Prerequisites are calculus, some matrix algebra, and some experience in programming. Norman Matloff is a professor of computer science at the University of California, Davis, and was formerly a statistics professor there. He is on the editorial boards of the Journal of Statistical Software and The R Journal. His book Statistical Regression and Classification: From Linear Models to Machine Learning was the recipient of the Ziegel Award for the best book reviewed in Technometrics in 2017. He is a recipient of his university's Distinguished Teaching Award.

Becoming a Data Head

Becoming a Data Head Book
Author : Alex J. Gutman,Jordan Goldmeier
Publisher : John Wiley & Sons
Release : 2021-04-13
ISBN : 1119741769
File Size : 22,6 Mb
Language : Ennglish

GET BOOK

Becoming a Data Head Book PDF/Epub Download

"Turn yourself into a Data Head. You'll become a more valuable employee and make your organization more successful." Thomas H. Davenport, Research Fellow, Author of Competing on Analytics, Big Data @ Work, and The AI Advantage You’ve heard the hype around data—now get the facts. In Becoming a Data Head: How to Think, Speak, and Understand Data Science, Statistics, and Machine Learning, award-winning data scientists Alex Gutman and Jordan Goldmeier pull back the curtain on data science and give you the language and tools necessary to talk and think critically about it. You’ll learn how to: Think statistically and understand the role variation plays in your life and decision making Speak intelligently and ask the right questions about the statistics and results you encounter in the workplace Understand what’s really going on with machine learning, text analytics, deep learning, and artificial intelligence Avoid common pitfalls when working with and interpreting data Becoming a Data Head is a complete guide for data science in the workplace: covering everything from the personalities you’ll work with to the math behind the algorithms. The authors have spent years in data trenches and sought to create a fun, approachable, and eminently readable book. Anyone can become a Data Head—an active participant in data science, statistics, and machine learning. Whether you’re a business professional, engineer, executive, or aspiring data scientist, this book is for you.

R for Data Science

R for Data Science Book
Author : Hadley Wickham,Garrett Grolemund
Publisher : "O'Reilly Media, Inc."
Release : 2016-12-12
ISBN : 1491910364
File Size : 20,9 Mb
Language : Ennglish

GET BOOK

R for Data Science Book PDF/Epub Download

Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

Build a Career in Data Science

Build a Career in Data Science Book
Author : Emily Robinson,Jacqueline Nolis
Publisher : Simon and Schuster
Release : 2020-03-06
ISBN : 1638350159
File Size : 53,7 Mb
Language : Ennglish

GET BOOK

Build a Career in Data Science Book PDF/Epub Download

Summary You are going to need more than technical knowledge to succeed as a data scientist. Build a Career in Data Science teaches you what school leaves out, from how to land your first job to the lifecycle of a data science project, and even how to become a manager. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology What are the keys to a data scientist’s long-term success? Blending your technical know-how with the right “soft skills” turns out to be a central ingredient of a rewarding career. About the book Build a Career in Data Science is your guide to landing your first data science job and developing into a valued senior employee. By following clear and simple instructions, you’ll learn to craft an amazing resume and ace your interviews. In this demanding, rapidly changing field, it can be challenging to keep projects on track, adapt to company needs, and manage tricky stakeholders. You’ll love the insights on how to handle expectations, deal with failures, and plan your career path in the stories from seasoned data scientists included in the book. What's inside Creating a portfolio of data science projects Assessing and negotiating an offer Leaving gracefully and moving up the ladder Interviews with professional data scientists About the reader For readers who want to begin or advance a data science career. About the author Emily Robinson is a data scientist at Warby Parker. Jacqueline Nolis is a data science consultant and mentor. Table of Contents: PART 1 - GETTING STARTED WITH DATA SCIENCE 1. What is data science? 2. Data science companies 3. Getting the skills 4. Building a portfolio PART 2 - FINDING YOUR DATA SCIENCE JOB 5. The search: Identifying the right job for you 6. The application: Résumés and cover letters 7. The interview: What to expect and how to handle it 8. The offer: Knowing what to accept PART 3 - SETTLING INTO DATA SCIENCE 9. The first months on the job 10. Making an effective analysis 11. Deploying a model into production 12. Working with stakeholders PART 4 - GROWING IN YOUR DATA SCIENCE ROLE 13. When your data science project fails 14. Joining the data science community 15. Leaving your job gracefully 16. Moving up the ladder

Data Science for Business

Data Science for Business Book
Author : Foster Provost,Tom Fawcett
Publisher : "O'Reilly Media, Inc."
Release : 2013-07-27
ISBN : 144937428X
File Size : 49,9 Mb
Language : Ennglish

GET BOOK

Data Science for Business Book PDF/Epub Download

Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates

Python Data Science Handbook

Python Data Science Handbook Book
Author : Jake VanderPlas
Publisher : "O'Reilly Media, Inc."
Release : 2016-11-21
ISBN : 1491912138
File Size : 22,9 Mb
Language : Ennglish

GET BOOK

Python Data Science Handbook Book PDF/Epub Download

For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Mathematics for Machine Learning

Mathematics for Machine Learning Book
Author : Marc Peter Deisenroth,A. Aldo Faisal,Cheng Soon Ong
Publisher : Cambridge University Press
Release : 2020-04-23
ISBN : 1108470041
File Size : 34,6 Mb
Language : Ennglish

GET BOOK

Mathematics for Machine Learning Book PDF/Epub Download

Distills key concepts from linear algebra, geometry, matrices, calculus, optimization, probability and statistics that are used in machine learning.