Skip to main content

Machine Learning With Pytorch And Scikit Learn

Download Machine Learning With Pytorch And Scikit Learn Full eBooks in PDF, EPUB, and kindle. Machine Learning With Pytorch And Scikit Learn is one my favorite book and give us some inspiration, very enjoy to read. you could read this book anywhere anytime directly from your device. This site is like a library, Use search box in the widget to get ebook that you want.

Machine Learning with Pytorch and Scikit Learn

Machine Learning with Pytorch and Scikit Learn Book
Author : Sebastian Raschka,Yuxi (Hayden) Liu,Dmytro Dzhulgakov
Publisher : Packt Publishing
Release : 2022-02-25
ISBN : 9781801819312
File Size : 55,5 Mb
Language : En, Es, Fr and De

DOWNLOAD

Book Summary :

PyTorch book of the bestselling and widely acclaimed Python Machine Learning series expanded to include transformers, XGBoost, and graph neural networks Key Features: Learn applied machine learning with a solid foundation in theory Clear, intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover PyTorch, transformers, XGBoost, graph neural networks, and best practices Book Description: Machine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial, and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, this book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach you the principles to build models and applications for yourself. Updated to cover deep learning using PyTorch, this book also introduces readers to the latest additions to scikit-learn. Moreover, this book covers various machine learning and deep learning techniques for text and image classification. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is also expanded to cover the latest trends in deep learning, including introductions to graph neural networks and large-scale transformers used for natural language processing (NLP). This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments. What You Will Learn: Explore frameworks, models, and techniques for machines to 'learn' from data Use scikit-learn for machine learning and PyTorch for deep learning Train machine learning classifiers on images, text, and more Build and train neural networks, transformers, and graph neural networks Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who this book is for: If you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential resource. Written for developers and data scientists who want to create practical machine learning with Python and PyTorch deep learning code. This Python book is ideal for anyone who wants to teach computers how to learn from data. Working knowledge of the Python programming language, along with a good understanding of calculus and linear algebra is a must.

Deep Learning with PyTorch

Deep Learning with PyTorch Book
Author : Luca Pietro Giovanni Antiga,Eli Stevens,Thomas Viehmann
Publisher : Simon and Schuster
Release : 2020-07-01
ISBN : 1638354073
File Size : 51,5 Mb
Language : En, Es, Fr and De

DOWNLOAD

Book Summary :

“We finally have the definitive treatise on PyTorch! It covers the basics and abstractions in great detail. I hope this book becomes your extended reference document.” —Soumith Chintala, co-creator of PyTorch Key Features Written by PyTorch’s creator and key contributors Develop deep learning models in a familiar Pythonic way Use PyTorch to build an image classifier for cancer detection Diagnose problems with your neural network and improve training with data augmentation Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands. Instantly familiar to anyone who knows Python data tools like NumPy and Scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It’s great for building quick models, and it scales smoothly from laptop to enterprise. Deep Learning with PyTorch teaches you to create deep learning and neural network systems with PyTorch. This practical book gets you to work right away building a tumor image classifier from scratch. After covering the basics, you’ll learn best practices for the entire deep learning pipeline, tackling advanced projects as your PyTorch skills become more sophisticated. All code samples are easy to explore in downloadable Jupyter notebooks. What You Will Learn Understanding deep learning data structures such as tensors and neural networks Best practices for the PyTorch Tensor API, loading data in Python, and visualizing results Implementing modules and loss functions Utilizing pretrained models from PyTorch Hub Methods for training networks with limited inputs Sifting through unreliable results to diagnose and fix problems in your neural network Improve your results with augmented data, better model architecture, and fine tuning This Book Is Written For For Python programmers with an interest in machine learning. No experience with PyTorch or other deep learning frameworks is required. About The Authors Eli Stevens has worked in Silicon Valley for the past 15 years as a software engineer, and the past 7 years as Chief Technical Officer of a startup making medical device software. Luca Antiga is co-founder and CEO of an AI engineering company located in Bergamo, Italy, and a regular contributor to PyTorch. Thomas Viehmann is a Machine Learning and PyTorch speciality trainer and consultant based in Munich, Germany and a PyTorch core developer. Table of Contents PART 1 - CORE PYTORCH 1 Introducing deep learning and the PyTorch Library 2 Pretrained networks 3 It starts with a tensor 4 Real-world data representation using tensors 5 The mechanics of learning 6 Using a neural network to fit the data 7 Telling birds from airplanes: Learning from images 8 Using convolutions to generalize PART 2 - LEARNING FROM IMAGES IN THE REAL WORLD: EARLY DETECTION OF LUNG CANCER 9 Using PyTorch to fight cancer 10 Combining data sources into a unified dataset 11 Training a classification model to detect suspected tumors 12 Improving training with metrics and augmentation 13 Using segmentation to find suspected nodules 14 End-to-end nodule analysis, and where to go next PART 3 - DEPLOYMENT 15 Deploying to production

Machine Learning with PyTorch and Scikit Learn

Machine Learning with PyTorch and Scikit Learn Book
Author : Sebastian Raschka,Yuxi (Hayden) Liu,Vahid Mirjalili,Dmytro Dzhulgakov
Publisher : Packt Publishing Ltd
Release : 2022-02-25
ISBN : 1801816387
File Size : 22,9 Mb
Language : En, Es, Fr and De

DOWNLOAD

Book Summary :

This book of the bestselling and widely acclaimed Python Machine Learning series is a comprehensive guide to machine and deep learning using PyTorch's simple to code framework. Purchase of the print or Kindle book includes a free eBook in PDF format. Key Features Learn applied machine learning with a solid foundation in theory Clear, intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover PyTorch, transformers, XGBoost, graph neural networks, and best practices Book Description Machine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself. Why PyTorch? PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP). This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments. What you will learn Explore frameworks, models, and techniques for machines to 'learn' from data Use scikit-learn for machine learning and PyTorch for deep learning Train machine learning classifiers on images, text, and more Build and train neural networks, transformers, and boosting algorithms Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who this book is for If you have a good grasp of Python basics and want to start learning about machine learning and deep learning, then this is the book for you. This is an essential resource written for developers and data scientists who want to create practical machine learning and deep learning applications using scikit-learn and PyTorch. Before you get started with this book, you'll need a good understanding of calculus, as well as linear algebra.

Python Machine Learning By Example

Python Machine Learning By Example Book
Author : Yuxi (Hayden) Liu
Publisher : Packt Publishing Ltd
Release : 2020-10-30
ISBN : 1800203861
File Size : 52,5 Mb
Language : En, Es, Fr and De

DOWNLOAD

Book Summary :

Equipped with the latest updates, this third edition of Python Machine Learning By Example provides a comprehensive course for ML enthusiasts to strengthen their command of ML concepts, techniques, and algorithms.

Hands On Machine Learning with Scikit Learn Keras and TensorFlow

Hands On Machine Learning with Scikit Learn  Keras  and TensorFlow Book
Author : Aurélien Géron
Publisher : "O'Reilly Media, Inc."
Release : 2019-09-05
ISBN : 149203259X
File Size : 46,6 Mb
Language : En, Es, Fr and De

DOWNLOAD

Book Summary :

Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets

Programming PyTorch for Deep Learning

Programming PyTorch for Deep Learning Book
Author : Ian Pointer
Publisher : O'Reilly Media
Release : 2019-09-20
ISBN : 1492045322
File Size : 43,8 Mb
Language : En, Es, Fr and De

DOWNLOAD

Book Summary :

Deep learning is changing everything. This machine-learning method has already surpassed traditional computer vision techniques, and the same is happening with NLP. If you're looking to bring deep learning into your domain, this practical book will bring you up to speed on key concepts using Facebook's PyTorch framework. Once author Ian Pointer helps you set up PyTorch on a cloud-based environment, you'll learn how use the framework to create neural architectures for performing operations on images, sound, text, and other types of data. By the end of the book, you'll be able to create neural networks and train them on multiple types of data. Learn how to deploy deep learning models to production Explore PyTorch use cases in companies other than Facebook Learn how to apply transfer learning to images Apply cutting-edge NLP techniques using a model trained on Wikipedia

Python Machine Learning

Python Machine Learning Book
Author : Sebastian Raschka
Publisher : Packt Publishing Ltd
Release : 2015-09-23
ISBN : 1783555149
File Size : 29,8 Mb
Language : En, Es, Fr and De

DOWNLOAD

Book Summary :

Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.

Deep Learning with PyTorch

Deep Learning with PyTorch Book
Author : Vishnu Subramanian
Publisher : Packt Publishing Ltd
Release : 2018-02-23
ISBN : 1788626079
File Size : 50,5 Mb
Language : En, Es, Fr and De

DOWNLOAD

Book Summary :

Build neural network models in text, vision and advanced analytics using PyTorch Key Features Learn PyTorch for implementing cutting-edge deep learning algorithms. Train your neural networks for higher speed and flexibility and learn how to implement them in various scenarios; Cover various advanced neural network architecture such as ResNet, Inception, DenseNet and more with practical examples; Book Description Deep learning powers the most intelligent systems in the world, such as Google Voice, Siri, and Alexa. Advancements in powerful hardware, such as GPUs, software frameworks such as PyTorch, Keras, Tensorflow, and CNTK along with the availability of big data have made it easier to implement solutions to problems in the areas of text, vision, and advanced analytics. This book will get you up and running with one of the most cutting-edge deep learning libraries—PyTorch. PyTorch is grabbing the attention of deep learning researchers and data science professionals due to its accessibility, efficiency and being more native to Python way of development. You'll start off by installing PyTorch, then quickly move on to learn various fundamental blocks that power modern deep learning. You will also learn how to use CNN, RNN, LSTM and other networks to solve real-world problems. This book explains the concepts of various state-of-the-art deep learning architectures, such as ResNet, DenseNet, Inception, and Seq2Seq, without diving deep into the math behind them. You will also learn about GPU computing during the course of the book. You will see how to train a model with PyTorch and dive into complex neural networks such as generative networks for producing text and images. By the end of the book, you'll be able to implement deep learning applications in PyTorch with ease. What you will learn Use PyTorch for GPU-accelerated tensor computations Build custom datasets and data loaders for images and test the models using torchvision and torchtext Build an image classifier by implementing CNN architectures using PyTorch Build systems that do text classification and language modeling using RNN, LSTM, and GRU Learn advanced CNN architectures such as ResNet, Inception, Densenet, and learn how to use them for transfer learning Learn how to mix multiple models for a powerful ensemble model Generate new images using GAN’s and generate artistic images using style transfer Who this book is for This book is for machine learning engineers, data analysts, data scientists interested in deep learning and are looking to explore implementing advanced algorithms in PyTorch. Some knowledge of machine learning is helpful but not a mandatory need. Working knowledge of Python programming is expected.