Skip to main content

Introduction To Algorithms Fourth Edition

Download Introduction To Algorithms Fourth Edition Full eBooks in PDF, EPUB, and kindle. Introduction To Algorithms Fourth Edition is one my favorite book and give us some inspiration, very enjoy to read. you could read this book anywhere anytime directly from your device. This site is like a library, Use search box in the widget to get ebook that you want.

Introduction to Algorithms fourth edition

Introduction to Algorithms  fourth edition Book
Author : Thomas H. Cormen,Charles E. Leiserson,Ronald L. Rivest,Clifford Stein
Publisher : MIT Press
Release : 2022-04-05
ISBN : 026204630X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

A comprehensive update of the leading algorithms text, with new material on matchings in bipartite graphs, online algorithms, machine learning, and other topics. Some books on algorithms are rigorous but incomplete; others cover masses of material but lack rigor. Introduction to Algorithms uniquely combines rigor and comprehensiveness. It covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers, with self-contained chapters and algorithms in pseudocode. Since the publication of the first edition, Introduction to Algorithms has become the leading algorithms text in universities worldwide as well as the standard reference for professionals. This fourth edition has been updated throughout. New for the fourth edition • New chapters on matchings in bipartite graphs, online algorithms, and machine learning • New material on topics including solving recurrence equations, hash tables, potential functions, and suffix arrays • 140 new exercises and 22 new problems • Reader feedback–informed improvements to old problems • Clearer, more personal, and gender-neutral writing style • Color added to improve visual presentation • Notes, bibliography, and index updated to reflect developments in the field • Website with new supplementary material

Introduction to Algorithms fourth edition

Introduction to Algorithms  fourth edition Book
Author : Thomas H. Cormen,Charles E. Leiserson,Ronald L. Rivest,Clifford Stein
Publisher : MIT Press
Release : 2022-04-05
ISBN : 0262367505
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

A comprehensive update of the leading algorithms text, with new material on matchings in bipartite graphs, online algorithms, machine learning, and other topics. Some books on algorithms are rigorous but incomplete; others cover masses of material but lack rigor. Introduction to Algorithms uniquely combines rigor and comprehensiveness. It covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers, with self-contained chapters and algorithms in pseudocode. Since the publication of the first edition, Introduction to Algorithms has become the leading algorithms text in universities worldwide as well as the standard reference for professionals. This fourth edition has been updated throughout. New for the fourth edition • New chapters on matchings in bipartite graphs, online algorithms, and machine learning • New material on topics including solving recurrence equations, hash tables, potential functions, and suffix arrays • 140 new exercises and 22 new problems • Reader feedback–informed improvements to old problems • Clearer, more personal, and gender-neutral writing style • Color added to improve visual presentation • Notes, bibliography, and index updated to reflect developments in the field • Website with new supplementary material

Introduction to Algorithms fourth edition

Introduction to Algorithms  fourth edition Book
Author : Thomas H. Cormen,Charles E. Leiserson,Ronald L. Rivest,Clifford Stein
Publisher : MIT Press
Release : 2022-04-05
ISBN : 026204630X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

A comprehensive update of the leading algorithms text, with new material on matchings in bipartite graphs, online algorithms, machine learning, and other topics. Some books on algorithms are rigorous but incomplete; others cover masses of material but lack rigor. Introduction to Algorithms uniquely combines rigor and comprehensiveness. It covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers, with self-contained chapters and algorithms in pseudocode. Since the publication of the first edition, Introduction to Algorithms has become the leading algorithms text in universities worldwide as well as the standard reference for professionals. This fourth edition has been updated throughout. New for the fourth edition • New chapters on matchings in bipartite graphs, online algorithms, and machine learning • New material on topics including solving recurrence equations, hash tables, potential functions, and suffix arrays • 140 new exercises and 22 new problems • Reader feedback–informed improvements to old problems • Clearer, more personal, and gender-neutral writing style • Color added to improve visual presentation • Notes, bibliography, and index updated to reflect developments in the field • Website with new supplementary material

Algorithms

Algorithms Book
Author : Robert Sedgewick,Kevin Wayne
Publisher : Addison-Wesley Professional
Release : 2011
ISBN : 032157351X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Essential Information about Algorithms and Data Structures A Classic Reference The latest version of Sedgewick, s best-selling series, reflecting an indispensable body of knowledge developed over the past several decades. Broad Coverage Full treatment of data structures and algorithms for sorting, searching, graph processing, and string processing, including fifty algorithms every programmer should know. See

Introduction to Algorithms third edition

Introduction to Algorithms  third edition Book
Author : Thomas H. Cormen,Charles E. Leiserson,Ronald L. Rivest,Clifford Stein
Publisher : MIT Press
Release : 2009-07-31
ISBN : 0262258102
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The latest edition of the essential text and professional reference, with substantial new material on such topics as vEB trees, multithreaded algorithms, dynamic programming, and edge-based flow. Some books on algorithms are rigorous but incomplete; others cover masses of material but lack rigor. Introduction to Algorithms uniquely combines rigor and comprehensiveness. The book covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers. Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor. The first edition became a widely used text in universities worldwide as well as the standard reference for professionals. The second edition featured new chapters on the role of algorithms, probabilistic analysis and randomized algorithms, and linear programming. The third edition has been revised and updated throughout. It includes two completely new chapters, on van Emde Boas trees and multithreaded algorithms, substantial additions to the chapter on recurrence (now called “Divide-and-Conquer”), and an appendix on matrices. It features improved treatment of dynamic programming and greedy algorithms and a new notion of edge-based flow in the material on flow networks. Many exercises and problems have been added for this edition. The international paperback edition is no longer available; the hardcover is available worldwide.

An Introduction to the Analysis of Algorithms

An Introduction to the Analysis of Algorithms Book
Author : Robert Sedgewick,Philippe Flajolet
Publisher : Addison-Wesley
Release : 2013-01-18
ISBN : 0133373487
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Despite growing interest, basic information on methods and models for mathematically analyzing algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary techniques and results in the field. Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for predicting algorithm performance and for comparing different algorithms on the basis of performance. Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings, tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of algorithms that are playing a critical role in the evolution of our modern computational infrastructure. Improvements and additions in this new edition include Upgraded figures and code An all-new chapter introducing analytic combinatorics Simplified derivations via analytic combinatorics throughout The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s The Art of Computer Programming books—and provide the background they need to keep abreast of new research. "[Sedgewick and Flajolet] are not only worldwide leaders of the field, they also are masters of exposition. I am sure that every serious computer scientist will find this book rewarding in many ways." —From the Foreword by Donald E. Knuth

Introduction To Algorithms

Introduction To Algorithms Book
Author : Thomas H.. Cormen,Thomas H Cormen,Charles E Leiserson,Ronald L Rivest,Clifford Stein
Publisher : MIT Press
Release : 2001
ISBN : 9780262032933
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The first edition won the award for Best 1990 Professional and Scholarly Book in Computer Science and Data Processing by the Association of American Publishers. There are books on algorithms that are rigorous but incomplete and others that cover masses of material but lack rigor. Introduction to Algorithms combines rigor and comprehensiveness. The book covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers. Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor. The first edition became the standard reference for professionals and a widely used text in universities worldwide. The second edition features new chapters on the role of algorithms, probabilistic analysis and randomized algorithms, and linear programming, as well as extensive revisions to virtually every section of the book. In a subtle but important change, loop invariants are introduced early and used throughout the text to prove algorithm correctness. Without changing the mathematical and analytic focus, the authors have moved much of the mathematical foundations material from Part I to an appendix and have included additional motivational material at the beginning.

Algorithms Unlocked

Algorithms Unlocked Book
Author : Thomas H. Cormen
Publisher : MIT Press
Release : 2013-03-01
ISBN : 0262313235
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

For anyone who has ever wondered how computers solve problems, an engagingly written guide for nonexperts to the basics of computer algorithms. Have you ever wondered how your GPS can find the fastest way to your destination, selecting one route from seemingly countless possibilities in mere seconds? How your credit card account number is protected when you make a purchase over the Internet? The answer is algorithms. And how do these mathematical formulations translate themselves into your GPS, your laptop, or your smart phone? This book offers an engagingly written guide to the basics of computer algorithms. In Algorithms Unlocked, Thomas Cormen—coauthor of the leading college textbook on the subject—provides a general explanation, with limited mathematics, of how algorithms enable computers to solve problems. Readers will learn what computer algorithms are, how to describe them, and how to evaluate them. They will discover simple ways to search for information in a computer; methods for rearranging information in a computer into a prescribed order (“sorting”); how to solve basic problems that can be modeled in a computer with a mathematical structure called a “graph” (useful for modeling road networks, dependencies among tasks, and financial relationships); how to solve problems that ask questions about strings of characters such as DNA structures; the basic principles behind cryptography; fundamentals of data compression; and even that there are some problems that no one has figured out how to solve on a computer in a reasonable amount of time.

An Introduction to Optimization

An Introduction to Optimization Book
Author : Edwin K. P. Chong,Stanislaw H. Zak
Publisher : John Wiley & Sons
Release : 2004-04-05
ISBN : 0471654000
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

A modern, up-to-date introduction to optimization theory andmethods This authoritative book serves as an introductory text tooptimization at the senior undergraduate and beginning graduatelevels. With consistently accessible and elementary treatment ofall topics, An Introduction to Optimization, Second Edition helpsstudents build a solid working knowledge of the field, includingunconstrained optimization, linear programming, and constrainedoptimization. Supplemented with more than one hundred tables and illustrations,an extensive bibliography, and numerous worked examples toillustrate both theory and algorithms, this book alsoprovides: * A review of the required mathematical background material * A mathematical discussion at a level accessible to MBA andbusiness students * A treatment of both linear and nonlinear programming * An introduction to recent developments, including neuralnetworks, genetic algorithms, and interior-point methods * A chapter on the use of descent algorithms for the training offeedforward neural networks * Exercise problems after every chapter, many new to thisedition * MATLAB(r) exercises and examples * Accompanying Instructor's Solutions Manual available onrequest An Introduction to Optimization, Second Edition helps studentsprepare for the advanced topics and technological developments thatlie ahead. It is also a useful book for researchers andprofessionals in mathematics, electrical engineering, economics,statistics, and business. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available from the Wiley editorialdepartment.

MATLAB for Brain and Cognitive Scientists

MATLAB for Brain and Cognitive Scientists Book
Author : Mike X Cohen
Publisher : MIT Press
Release : 2017-05-12
ISBN : 0262035820
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

An introduction to a popular programming language for neuroscience research, taking the reader from beginning to intermediate and advanced levels of MATLAB programming. MATLAB is one of the most popular programming languages for neuroscience and psychology research. Its balance of usability, visualization, and widespread use makes it one of the most powerful tools in a scientist's toolbox. In this book, Mike Cohen teaches brain scientists how to program in MATLAB, with a focus on applications most commonly used in neuroscience and psychology. Although most MATLAB tutorials will abandon users at the beginner's level, leaving them to sink or swim, MATLAB for Brain and Cognitive Scientists takes readers from beginning to intermediate and advanced levels of MATLAB programming, helping them gain real expertise in applications that they will use in their work. The book offers a mix of instructive text and rigorous explanations of MATLAB code along with programming tips and tricks. The goal is to teach the reader how to program data analyses in neuroscience and psychology. Readers will learn not only how to but also how not to program, with examples of bad code that they are invited to correct or improve. Chapters end with exercises that test and develop the skills taught in each chapter. Interviews with neuroscientists and cognitive scientists who have made significant contributions their field using MATLAB appear throughout the book. MATLAB for Brain and Cognitive Scientists is an essential resource for both students and instructors, in the classroom or for independent study.

Introduction to Machine Learning fourth edition

Introduction to Machine Learning  fourth edition Book
Author : Ethem Alpaydin
Publisher : MIT Press
Release : 2020-03-24
ISBN : 0262358069
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

A substantially revised fourth edition of a comprehensive textbook, including new coverage of recent advances in deep learning and neural networks. The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Machine learning underlies such exciting new technologies as self-driving cars, speech recognition, and translation applications. This substantially revised fourth edition of a comprehensive, widely used machine learning textbook offers new coverage of recent advances in the field in both theory and practice, including developments in deep learning and neural networks. The book covers a broad array of topics not usually included in introductory machine learning texts, including supervised learning, Bayesian decision theory, parametric methods, semiparametric methods, nonparametric methods, multivariate analysis, hidden Markov models, reinforcement learning, kernel machines, graphical models, Bayesian estimation, and statistical testing. The fourth edition offers a new chapter on deep learning that discusses training, regularizing, and structuring deep neural networks such as convolutional and generative adversarial networks; new material in the chapter on reinforcement learning that covers the use of deep networks, the policy gradient methods, and deep reinforcement learning; new material in the chapter on multilayer perceptrons on autoencoders and the word2vec network; and discussion of a popular method of dimensionality reduction, t-SNE. New appendixes offer background material on linear algebra and optimization. End-of-chapter exercises help readers to apply concepts learned. Introduction to Machine Learning can be used in courses for advanced undergraduate and graduate students and as a reference for professionals.

The Algorithm Design Manual

The Algorithm Design Manual Book
Author : Steven S Skiena
Publisher : Springer Science & Business Media
Release : 2009-04-05
ISBN : 1848000707
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This newly expanded and updated second edition of the best-selling classic continues to take the "mystery" out of designing algorithms, and analyzing their efficacy and efficiency. Expanding on the first edition, the book now serves as the primary textbook of choice for algorithm design courses while maintaining its status as the premier practical reference guide to algorithms for programmers, researchers, and students. The reader-friendly Algorithm Design Manual provides straightforward access to combinatorial algorithms technology, stressing design over analysis. The first part, Techniques, provides accessible instruction on methods for designing and analyzing computer algorithms. The second part, Resources, is intended for browsing and reference, and comprises the catalog of algorithmic resources, implementations and an extensive bibliography. NEW to the second edition: • Doubles the tutorial material and exercises over the first edition • Provides full online support for lecturers, and a completely updated and improved website component with lecture slides, audio and video • Contains a unique catalog identifying the 75 algorithmic problems that arise most often in practice, leading the reader down the right path to solve them • Includes several NEW "war stories" relating experiences from real-world applications • Provides up-to-date links leading to the very best algorithm implementations available in C, C++, and Java

Introduction to Data Compression

Introduction to Data Compression Book
Author : Khalid Sayood
Publisher : Elsevier
Release : 2006
ISBN : 012620862X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Each edition of Introduction to Data Compression has widely been considered the best introduction and reference text on the art and science of data compression, and the third edition continues in this tradition. Data compression techniques and technology are ever-evolving with new applications in image, speech, text, audio, and video. The third edition includes all the cutting edge updates the reader will need during the work day and in class. Khalid Sayood provides an extensive introduction to the theory underlying today's compression techniques with detailed instruction for their applications using several examples to explain the concepts. Encompassing the entire field of data compression Introduction to Data Compression, includes lossless and lossy compression, Huffman coding, arithmetic coding, dictionary techniques, context based compression, scalar and vector quantization. Khalid Sayood provides a working knowledge of data compression, giving the reader the tools to develop a complete and concise compression package upon completion of his book. *New content added on the topic of audio compression including a description of the mp3 algorithm *New video coding standard and new facsimile standard explained *Completely explains established and emerging standards in depth including JPEG 2000, JPEG-LS, MPEG-2, Group 3 and 4 faxes, JBIG 2, ADPCM, LPC, CELP, and MELP *Source code provided via companion web site that gives readers the opportunity to build their own algorithms, choose and implement techniques in their own applications

Algorithms in C Parts 1 4

Algorithms in C    Parts 1 4 Book
Author : Robert Sedgewick
Publisher : Pearson Education
Release : 1998-07-13
ISBN : 0768685036
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Robert Sedgewick has thoroughly rewritten and substantially expanded and updated his popular work to provide current and comprehensive coverage of important algorithms and data structures. Christopher Van Wyk and Sedgewick have developed new C++ implementations that both express the methods in a concise and direct manner, and also provide programmers with the practical means to test them on real applications. Many new algorithms are presented, and the explanations of each algorithm are much more detailed than in previous editions. A new text design and detailed, innovative figures, with accompanying commentary, greatly enhance the presentation. The third edition retains the successful blend of theory and practice that has made Sedgewick's work an invaluable resource for more than 250,000 programmers! This particular book, Parts 1n4, represents the essential first half of Sedgewick's complete work. It provides extensive coverage of fundamental data structures and algorithms for sorting, searching, and related applications. Although the substance of the book applies to programming in any language, the implementations by Van Wyk and Sedgewick also exploit the natural match between C++ classes and ADT implementations. Highlights Expanded coverage of arrays, linked lists, strings, trees, and other basic data structures Greater emphasis on abstract data types (ADTs), modular programming, object-oriented programming, and C++ classes than in previous editions Over 100 algorithms for sorting, selection, priority queue ADT implementations, and symbol table ADT (searching) implementations New implementations of binomial queues, multiway radix sorting, randomized BSTs, splay trees, skip lists, multiway tries, B trees, extendible hashing, and much more Increased quantitative information about the algorithms, giving you a basis for comparing them Over 1000 new exercises to help you learn the properties of algorithms Whether you are learning the algorithms for the first time or wish to have up-to-date reference material that incorporates new programming styles with classic and new algorithms, you will find a wealth of useful information in this book.

Algorithms

Algorithms Book
Author : Robert Sedgewick,Kevin Wayne
Publisher : Addison-Wesley Professional
Release : 2014-02-01
ISBN : 0133847268
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This book is Part II of the fourth edition of Robert Sedgewick and Kevin Wayne’s Algorithms , the leading textbook on algorithms today, widely used in colleges and universities worldwide. Part II contains Chapters 4 through 6 of the book. The fourth edition of Algorithms surveys the most important computer algorithms currently in use and provides a full treatment of data structures and algorithms for sorting, searching, graph processing, and string processing -- including fifty algorithms every programmer should know. In this edition, new Java implementations are written in an accessible modular programming style, where all of the code is exposed to the reader and ready to use. The algorithms in this book represent a body of knowledge developed over the last 50 years that has become indispensable, not just for professional programmers and computer science students but for any student with interests in science, mathematics, and engineering, not to mention students who use computation in the liberal arts. The companion web site, algs4.cs.princeton.edu contains An online synopsis Full Java implementations Test data Exercises and answers Dynamic visualizations Lecture slides Programming assignments with checklists Links to related material The MOOC related to this book is accessible via the "Online Course" link at algs4.cs.princeton.edu. The course offers more than 100 video lecture segments that are integrated with the text, extensive online assessments, and the large-scale discussion forums that have proven so valuable. Offered each fall and spring, this course regularly attracts tens of thousands of registrants. Robert Sedgewick and Kevin Wayne are developing a modern approach to disseminating knowledge that fully embraces technology, enabling people all around the world to discover new ways of learning and teaching. By integrating their textbook, online content, and MOOC, all at the state of the art, they have built a unique resource that greatly expands the breadth and depth of the educational experience.

Grokking Algorithms

Grokking Algorithms Book
Author : Aditya Bhargava
Publisher : Simon and Schuster
Release : 2016-05-12
ISBN : 1638353344
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Summary Grokking Algorithms is a fully illustrated, friendly guide that teaches you how to apply common algorithms to the practical problems you face every day as a programmer. You'll start with sorting and searching and, as you build up your skills in thinking algorithmically, you'll tackle more complex concerns such as data compression and artificial intelligence. Each carefully presented example includes helpful diagrams and fully annotated code samples in Python. Learning about algorithms doesn't have to be boring! Get a sneak peek at the fun, illustrated, and friendly examples you'll find in Grokking Algorithms on Manning Publications' YouTube channel. Continue your journey into the world of algorithms with Algorithms in Motion, a practical, hands-on video course available exclusively at Manning.com (www.manning.com/livevideo/algorithms-​in-motion). Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology An algorithm is nothing more than a step-by-step procedure for solving a problem. The algorithms you'll use most often as a programmer have already been discovered, tested, and proven. If you want to understand them but refuse to slog through dense multipage proofs, this is the book for you. This fully illustrated and engaging guide makes it easy to learn how to use the most important algorithms effectively in your own programs. About the Book Grokking Algorithms is a friendly take on this core computer science topic. In it, you'll learn how to apply common algorithms to the practical programming problems you face every day. You'll start with tasks like sorting and searching. As you build up your skills, you'll tackle more complex problems like data compression and artificial intelligence. Each carefully presented example includes helpful diagrams and fully annotated code samples in Python. By the end of this book, you will have mastered widely applicable algorithms as well as how and when to use them. What's Inside Covers search, sort, and graph algorithms Over 400 pictures with detailed walkthroughs Performance trade-offs between algorithms Python-based code samples About the Reader This easy-to-read, picture-heavy introduction is suitable for self-taught programmers, engineers, or anyone who wants to brush up on algorithms. About the Author Aditya Bhargava is a Software Engineer with a dual background in Computer Science and Fine Arts. He blogs on programming at adit.io. Table of Contents Introduction to algorithms Selection sort Recursion Quicksort Hash tables Breadth-first search Dijkstra's algorithm Greedy algorithms Dynamic programming K-nearest neighbors

The Rails Way

The Rails Way Book
Author : Obie Fernandez
Publisher : Pearson Education
Release : 2007-11-16
ISBN : 032163019X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The expert guide to building Ruby on Rails applications Ruby on Rails strips complexity from the development process, enabling professional developers to focus on what matters most: delivering business value. Now, for the first time, there’s a comprehensive, authoritative guide to building production-quality software with Rails. Pioneering Rails developer Obie Fernandez and a team of experts illuminate the entire Rails API, along with the Ruby idioms, design approaches, libraries, and plug-ins that make Rails so valuable. Drawing on their unsurpassed experience, they address the real challenges development teams face, showing how to use Rails’ tools and best practices to maximize productivity and build polished applications users will enjoy. Using detailed code examples, Obie systematically covers Rails’ key capabilities and subsystems. He presents advanced programming techniques, introduces open source libraries that facilitate easy Rails adoption, and offers important insights into testing and production deployment. Dive deep into the Rails codebase together, discovering why Rails behaves as it does— and how to make it behave the way you want it to. This book will help you Increase your productivity as a web developer Realize the overall joy of programming with Ruby on Rails Learn what’s new in Rails 2.0 Drive design and protect long-term maintainability with TestUnit and RSpec Understand and manage complex program flow in Rails controllers Leverage Rails’ support for designing REST-compliant APIs Master sophisticated Rails routing concepts and techniques Examine and troubleshoot Rails routing Make the most of ActiveRecord object-relational mapping Utilize Ajax within your Rails applications Incorporate logins and authentication into your application Extend Rails with the best third-party plug-ins and write your own Integrate email services into your applications with ActionMailer Choose the right Rails production configurations Streamline deployment with Capistrano

Introduction to Computation and Programming Using Python second edition

Introduction to Computation and Programming Using Python  second edition Book
Author : John V. Guttag
Publisher : MIT Press
Release : 2016-08-12
ISBN : 0262529629
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The new edition of an introductory text that teaches students the art of computational problem solving, covering topics ranging from simple algorithms to information visualization. This book introduces students with little or no prior programming experience to the art of computational problem solving using Python and various Python libraries, including PyLab. It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of data science for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (MOOC). This new edition has been updated for Python 3, reorganized to make it easier to use for courses that cover only a subset of the material, and offers additional material including five new chapters. Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming. This edition offers expanded material on statistics and machine learning and new chapters on Frequentist and Bayesian statistics.

Introduction to Machine Learning

Introduction to Machine Learning Book
Author : Ethem Alpaydin
Publisher : MIT Press
Release : 2014-08-29
ISBN : 0262028182
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. Introduction to Machine Learning is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. Subjects include supervised learning; Bayesian decision theory; parametric, semi-parametric, and nonparametric methods; multivariate analysis; hidden Markov models; reinforcement learning; kernel machines; graphical models; Bayesian estimation; and statistical testing.Machine learning is rapidly becoming a skill that computer science students must master before graduation. The third edition of Introduction to Machine Learning reflects this shift, with added support for beginners, including selected solutions for exercises and additional example data sets (with code available online). Other substantial changes include discussions of outlier detection; ranking algorithms for perceptrons and support vector machines; matrix decomposition and spectral methods; distance estimation; new kernel algorithms; deep learning in multilayered perceptrons; and the nonparametric approach to Bayesian methods. All learning algorithms are explained so that students can easily move from the equations in the book to a computer program. The book can be used by both advanced undergraduates and graduate students. It will also be of interest to professionals who are concerned with the application of machine learning methods.

Algorithms from THE BOOK

Algorithms from THE BOOK Book
Author : Kenneth Lange
Publisher : SIAM
Release : 2020-05-04
ISBN : 1611976170
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Algorithms are a dominant force in modern culture, and every indication is that they will become more pervasive, not less. The best algorithms are undergirded by beautiful mathematics. This text cuts across discipline boundaries to highlight some of the most famous and successful algorithms. Readers are exposed to the principles behind these examples and guided in assembling complex algorithms from simpler building blocks. Written in clear, instructive language within the constraints of mathematical rigor, Algorithms from THE BOOK includes a large number of classroom-tested exercises at the end of each chapter. The appendices cover background material often omitted from undergraduate courses. Most of the algorithm descriptions are accompanied by Julia code, an ideal language for scientific computing. This code is immediately available for experimentation. Algorithms from THE BOOK is aimed at first-year graduate and advanced undergraduate students. It will also serve as a convenient reference for professionals throughout the mathematical sciences, physical sciences, engineering, and the quantitative sectors of the biological and social sciences.