Skip to main content

Data Science From Scratch

Download Data Science From Scratch Full eBooks in PDF, EPUB, and kindle. Data Science From Scratch is one my favorite book and give us some inspiration, very enjoy to read. you could read this book anywhere anytime directly from your device. This site is like a library, Use search box in the widget to get ebook that you want.

Data Science from Scratch

Data Science from Scratch Book
Author : Joel Grus
Publisher : "O'Reilly Media, Inc."
Release : 2015-04-14
ISBN : 1491904402
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Data Science from Scratch

Data Science from Scratch Book
Author : Joel Grus
Publisher : "O'Reilly Media, Inc."
Release : 2015-04-14
ISBN : 1491904399
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Data Science from Scratch

Data Science from Scratch Book
Author : Joel Grus
Publisher : O'Reilly Media
Release : 2015-04-25
ISBN : 9781491901427
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

This is a first-principles-based, practical introduction to the fundamentals of data science aimed at the mathematically-comfortable reader with some programming skills. The book covers: The important parts of Python to know The important parts of Math / Probability / Statistics to know The basics of data science How commonly-used data science techniques work (learning by implementing them) What is Map-Reduce and how to do it in Python Other applications such as NLP, Network Analysis, and more

Data Science From Scratch

Data Science From Scratch Book
Author : Steven Cooper
Publisher : Data Science
Release : 2019-08-27
ISBN : 9783903331167
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

If you are looking to start a new career that is in high demand, then you need to continue reading. Data scientists are changing the way big data is used in different institutions.

Data Analysis from Scratch with Python

Data Analysis from Scratch with Python Book
Author : Peters Morgan
Publisher : Createspace Independent Publishing Platform
Release : 2018-08-14
ISBN : 9781725678095
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

******Free eBook for customers who purchase the print book from Amazon****** Are you thinking of becoming a data analyst using Python? If you are looking for a complete guide to data analysis using Python language and its library that will help you to become an effective data scientist, this book is for you. From AI Sciences Publisher Our books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. It will help you in preparing a solid foundation and learn any other high-level courses. To get the most out of the concepts that would be covered, readers are advised to adopt hands on approach, which would lead to better mental representations. Step By Step Guide and Visual Illustrations and Examples The Book give complete instructions for manipulating, processing, cleaning, modeling and crunching datasets in Python. This is a hands-on guide with practical case studies of data analysis problems effectively. You will learn pandas, NumPy, IPython, and Jupiter in the Process. Target Users This book is a practical introduction to data science tools in Python. It is ideal for analyst's beginners to Python and for Python programmers new to data science and computer science. Instead of tough math formulas, this book contains several graphs and images. What's Inside This Book? Introduction Why Choose Python for Data Science & Machine Learning Prerequisites & Reminders Python Quick Review Overview & Objectives A Quick Example Getting & Processing Data Data Visualization Supervised & Unsupervised Learning Regression Simple Linear Regression Multiple Linear Regression Decision Tree Random Forest Classification Logistic Regression K-Nearest Neighbors Decision Tree Classification Random Forest Classification Clustering Goals & Uses of Clustering K-Means Clustering Anomaly Detection Association Rule Learning Explanation Apriori Reinforcement Learning What is Reinforcement Learning Comparison with Supervised & Unsupervised Learning Applying Reinforcement Learning Neural Networks An Idea of How the Brain Works Potential & Constraints Here's an Example Natural Language Processing Analyzing Words & Sentiments Using NLTK Model Selection & Improving Performance Sources & References Frequently Asked Questions Q: Is this book for me and do I need programming experience? A: if you want to smash Python for data analysis, this book is for you. Little programming experience is required. If you already wrote a few lines of code and recognize basic programming statements, you'll be OK. Q: Does this book include everything I need to become a data science expert? A: Unfortunately, no. This book is designed for readers taking their first steps in data analysis and further learning will be required beyond this book to master all aspects. Q: Can I have a refund if this book is not fitted for me? A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. We will also be happy to help you if you send us an email at contact@aisciences.net. AI Sciences Company offers you a free eBooks at http: //aisciences.net/free/

Python Data Science Handbook

Python Data Science Handbook Book
Author : Jake VanderPlas
Publisher : "O'Reilly Media, Inc."
Release : 2016-11-21
ISBN : 1491912138
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Data Science for Business

Data Science for Business Book
Author : Foster Provost,Tom Fawcett
Publisher : "O'Reilly Media, Inc."
Release : 2013-07-27
ISBN : 144937428X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates

Doing Data Science

Doing Data Science Book
Author : Cathy O'Neil,Rachel Schutt
Publisher : "O'Reilly Media, Inc."
Release : 2013-10-09
ISBN : 144936389X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.

What Is Data Science

What Is Data Science  Book
Author : Mike Loukides
Publisher : "O'Reilly Media, Inc."
Release : 2011-04-10
ISBN : 1449336094
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

We've all heard it: according to Hal Varian, statistics is the next sexy job. Five years ago, in What is Web 2.0, Tim O'Reilly said that "data is the next Intel Inside." But what does that statement mean? Why do we suddenly care about statistics and about data? This report examines the many sides of data science -- the technologies, the companies and the unique skill sets.The web is full of "data-driven apps." Almost any e-commerce application is a data-driven application. There's a database behind a web front end, and middleware that talks to a number of other databases and data services (credit card processing companies, banks, and so on). But merely using data isn't really what we mean by "data science." A data application acquires its value from the data itself, and creates more data as a result. It's not just an application with data; it's a data product. Data science enables the creation of data products.

Mastering Machine Learning with Python in Six Steps

Mastering Machine Learning with Python in Six Steps Book
Author : Manohar Swamynathan
Publisher : Apress
Release : 2019-10-01
ISBN : 148424947X
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Explore fundamental to advanced Python 3 topics in six steps, all designed to make you a worthy practitioner. This updated version’s approach is based on the “six degrees of separation” theory, which states that everyone and everything is a maximum of six steps away and presents each topic in two parts: theoretical concepts and practical implementation using suitable Python 3 packages. You’ll start with the fundamentals of Python 3 programming language, machine learning history, evolution, and the system development frameworks. Key data mining/analysis concepts, such as exploratory analysis, feature dimension reduction, regressions, time series forecasting and their efficient implementation in Scikit-learn are covered as well. You’ll also learn commonly used model diagnostic and tuning techniques. These include optimal probability cutoff point for class creation, variance, bias, bagging, boosting, ensemble voting, grid search, random search, Bayesian optimization, and the noise reduction technique for IoT data. Finally, you’ll review advanced text mining techniques, recommender systems, neural networks, deep learning, reinforcement learning techniques and their implementation. All the code presented in the book will be available in the form of iPython notebooks to enable you to try out these examples and extend them to your advantage. What You'll Learn Understand machine learning development and frameworksAssess model diagnosis and tuning in machine learningExamine text mining, natuarl language processing (NLP), and recommender systemsReview reinforcement learning and CNN Who This Book Is For Python developers, data engineers, and machine learning engineers looking to expand their knowledge or career into machine learning area.

Build a Career in Data Science

Build a Career in Data Science Book
Author : Emily Robinson,Jacqueline Nolis
Publisher : Simon and Schuster
Release : 2020-03-06
ISBN : 1638350159
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Summary You are going to need more than technical knowledge to succeed as a data scientist. Build a Career in Data Science teaches you what school leaves out, from how to land your first job to the lifecycle of a data science project, and even how to become a manager. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology What are the keys to a data scientist’s long-term success? Blending your technical know-how with the right “soft skills” turns out to be a central ingredient of a rewarding career. About the book Build a Career in Data Science is your guide to landing your first data science job and developing into a valued senior employee. By following clear and simple instructions, you’ll learn to craft an amazing resume and ace your interviews. In this demanding, rapidly changing field, it can be challenging to keep projects on track, adapt to company needs, and manage tricky stakeholders. You’ll love the insights on how to handle expectations, deal with failures, and plan your career path in the stories from seasoned data scientists included in the book. What's inside Creating a portfolio of data science projects Assessing and negotiating an offer Leaving gracefully and moving up the ladder Interviews with professional data scientists About the reader For readers who want to begin or advance a data science career. About the author Emily Robinson is a data scientist at Warby Parker. Jacqueline Nolis is a data science consultant and mentor. Table of Contents: PART 1 - GETTING STARTED WITH DATA SCIENCE 1. What is data science? 2. Data science companies 3. Getting the skills 4. Building a portfolio PART 2 - FINDING YOUR DATA SCIENCE JOB 5. The search: Identifying the right job for you 6. The application: Résumés and cover letters 7. The interview: What to expect and how to handle it 8. The offer: Knowing what to accept PART 3 - SETTLING INTO DATA SCIENCE 9. The first months on the job 10. Making an effective analysis 11. Deploying a model into production 12. Working with stakeholders PART 4 - GROWING IN YOUR DATA SCIENCE ROLE 13. When your data science project fails 14. Joining the data science community 15. Leaving your job gracefully 16. Moving up the ladder

Data Science from Scratch

Data Science from Scratch Book
Author : Joel Grus
Publisher : O'Reilly Media
Release : 2019-04-12
ISBN : 1492041106
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. With this updated second edition, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.

Deep Learning from Scratch

Deep Learning from Scratch Book
Author : Seth Weidman
Publisher : O'Reilly Media
Release : 2019-09-09
ISBN : 1492041386
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

With the resurgence of neural networks in the 2010s, deep learning has become essential for machine learning practitioners and even many software engineers. This book provides a comprehensive introduction for data scientists and software engineers with machine learning experience. You’ll start with deep learning basics and move quickly to the details of important advanced architectures, implementing everything from scratch along the way. Author Seth Weidman shows you how neural networks work using a first principles approach. You’ll learn how to apply multilayer neural networks, convolutional neural networks, and recurrent neural networks from the ground up. With a thorough understanding of how neural networks work mathematically, computationally, and conceptually, you’ll be set up for success on all future deep learning projects. This book provides: Extremely clear and thorough mental models—accompanied by working code examples and mathematical explanations—for understanding neural networks Methods for implementing multilayer neural networks from scratch, using an easy-to-understand object-oriented framework Working implementations and clear-cut explanations of convolutional and recurrent neural networks Implementation of these neural network concepts using the popular PyTorch framework

Data Science Job How to become a Data Scientist

Data Science Job  How to become a Data Scientist Book
Author : Przemek Chojecki
Publisher : Przemek Chojecki
Release : 2020-01-31
ISBN : 0987650XXX
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

We’re living in a digital world. Most of our global economy is digital and the sheer volume of data is stupendous. It’s 2020 and we’re living in the future. Data Scientist is one of the hottest job on the market right now. Demand for data science is huge and will only grow, and it seems like it will grow much faster than the actual number of data scientists. So if you want to make a career change and become a data scientist, now is the time. This book will guide you through the process. From my experience of working with multiple companies as a project manager, a data science consultant or a CTO, I was able to see the process of hiring data scientists and building data science teams. I know what’s important to land your first job as a data scientist, what skills you should acquire, what you should show during a job interview.

Data Science for Beginners

Data Science for Beginners Book
Author : Andrew Park
Publisher : Unknown
Release : 2020-05-14
ISBN : 0987650XXX
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Master the world of Python, Data Analysis, Machine Learning and Data Science with this comprehensive 4-in-1 bundle. Are you interested in becoming a Python geek? Or do you want to learn more about the fascinating world of Data Science, and what it can do for you? Then keep reading. Created with the beginner in mind, this powerful bundle delves into the fundamentals behind Python and Data Science, from basic code and concepts to complex Neural Networks and data manipulation. Inside, you'll discover everything you need to know to get started with Python and Data Science, and begin your journey to success! In book one, PYTHON FOR BEGINNERS, you'll learn: How to install Python What are the different Python Data Types, Variables and Basic Operators Data Structures, Functions and Files Conditional and Loops in Python Object-Oriented Programming (OOP), Inheritance and Polymorphism Essential Programming Tools and Exception Handling An application to Decision Trees And Much More! In book two, PYTHON FOR DATA ANALYSIS, you will: What Data Analysis is all about and why businesses are investing in this sector The 5 steps of a Data Analysis Neural Network The 7 Python libraries that make Python one of the best choices for Data Analysis How Data Visualization and Matplotlib can help you to understand the data you are working with. Some of the main industries that are using data to improve their business with 14 real-world applications And Much More! In book three, PYTHON MACHINE LEARNING, you'll discover: What is Machine Learning and how it is applied in real-world situations Understanding the differences between Machine Learning, Deep Learning, and Artificial Intelligence Machine learning training models, Regression techniques and Linear Regression in Python How to use Lists and Modules in Python The 12 essential libraries for Machine Learning in Python Artificial Neural Networks And Much More! And in book four, PYTHON DATA SCIENCE, you will: What Data Science is all about and why so many companies are using it to give them a competitive edge. Why Python and how to use it to implement Data Science The main Data Structures & Object-Oriented Programming, Functions and Modules in Python with practical codes and exercises The 7 most important algorithms and models in Data Science Data Aggregation, Group Operations, Databases and Data in the Cloud 9 important Data Mining techniques in Data Science And So Much More! Whether you're a complete beginner or a programmer looking to improve his skillset, Data Science for Beginners is your all-in-one solution to mastering the world of Python and Data Science. Would you like to know more?Scroll Up and Click the BUY NOW Button to Get Your Copy!

Getting Started with Streamlit for Data Science

Getting Started with Streamlit for Data Science Book
Author : Tyler Richards
Publisher : Packt Publishing Ltd
Release : 2021-08-20
ISBN : 1800563205
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Create, deploy, and test your Python applications, analyses, and models with ease using Streamlit Key FeaturesLearn how to showcase machine learning models in a Streamlit application effectively and efficientlyBecome an expert Streamlit creator by getting hands-on with complex application creationDiscover how Streamlit enables you to create and deploy apps effortlesslyBook Description Streamlit shortens the development time for the creation of data-focused web applications, allowing data scientists to create web app prototypes using Python in hours instead of days. Getting Started with Streamlit for Data Science takes a hands-on approach to helping you learn the tips and tricks that will have you up and running with Streamlit in no time. You'll start with the fundamentals of Streamlit by creating a basic app and gradually build on the foundation by producing high-quality graphics with data visualization and testing machine learning models. As you advance through the chapters, you'll walk through practical examples of both personal data projects and work-related data-focused web applications, and get to grips with more challenging topics such as using Streamlit Components, beautifying your apps, and quick deployment of your new apps. By the end of this book, you'll be able to create dynamic web apps in Streamlit quickly and effortlessly using the power of Python. What you will learnSet up your first development environment and create a basic Streamlit app from scratchExplore methods for uploading, downloading, and manipulating data in Streamlit appsCreate dynamic visualizations in Streamlit using built-in and imported Python librariesDiscover strategies for creating and deploying machine learning models in StreamlitUse Streamlit sharing for one-click deploymentBeautify Streamlit apps using themes, Streamlit Components, and Streamlit sidebarImplement best practices for prototyping your data science work with StreamlitWho this book is for This book is for data scientists and machine learning enthusiasts who want to create web apps using Streamlit. Whether you're a junior data scientist looking to deploy your first machine learning project in Python to improve your resume or a senior data scientist who wants to use Streamlit to make convincing and dynamic data analyses, this book will help you get there! Prior knowledge of Python programming will assist with understanding the concepts covered.

Practical Statistics for Data Scientists

Practical Statistics for Data Scientists Book
Author : Peter Bruce,Andrew Bruce
Publisher : "O'Reilly Media, Inc."
Release : 2017-05-10
ISBN : 1491952911
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data

Foundations of Data Science

Foundations of Data Science Book
Author : Avrim Blum,John Hopcroft,Ravi Kannan
Publisher : Cambridge University Press
Release : 2020-01-31
ISBN : 1108485065
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Covers mathematical and algorithmic foundations of data science: machine learning, high-dimensional geometry, and analysis of large networks.

Ten Essays on Fizz Buzz

Ten Essays on Fizz Buzz Book
Author : Joel Grus
Publisher : Unknown
Release : 2020-08-13
ISBN : 9780982481820
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

"This book is so good. I wish I'd written it." -- Tim Hopper (@tdhopper)"Highly recommended: a grand tour of computer science theory and practical software engineering, explored through the lens of 10 Fizz Buzz solutions in Python. Outstanding." -- Paco Nathan (@pacoid)"I'd never have thought a book about Fizz Buzz would make me a better programmer, but I was wrong. Joel in the course of 10 chapters does a broad survey of core Python concepts, software design and testing, mathematics, and more (including deep learning) using Fizz Buzz as the guiding example. It's that rare technical book that remains engaging, entertaining, and accessible." -- Binal Patel (@binalkp91)More real Python tips than any "Python tricks" book! From a Python beginner to an experienced ML practitioner, you're bound to learn something about the language and its application to a progressive level of algorithmic applications. Recommended for the anyone looking to "level up" their Python or problem solving skills! -- Tom Marthaler (@tmarthal)Fizz Buzz is the following (simple) problem: Print the numbers from 1 to 100, except that if the number is divisible by 3, instead print "fizz"; if the number is divisible by 5, instead print "buzz"; and if the number is divisible by 15, instead print "fizzbuzz".It originated as a children's game, but has since taken on a new life as a lowest-common-denominator litmus test for assessing computer programmers.If you are an experienced programmer, it is an extremely easy problem to solve. Because of this, it has taken on a third life as the prototypical bad interview problem. Everyone knows that it's the question you ask people to make sure that they're not completely incompetent as programmers. Accordingly, if your interviewer asks you to solve it, he's suggesting he thinks it possible that you're completely incompetent as a programmer. You would not be wrong to feel insulted!My association with this problem began in 2016, when I wrote a blog post called Fizz Buzz in Tensorflow, the (possibly fictional) story of one such insulted programmer who decided to show up his interviewer by approaching Fizz Buzz as a deep learning problem. This post went modestly viral, and ever since then I have been seen as a thought leader in the Fizz Buzz space.Accordingly, over the years I have come up with and/or collected various other stupid and/or clever ways of solving Fizz Buzz. I have not blogged about them, as I am not the sort of person who beats a joke to death, but occasionally I will tweet about them, and recently in response someone suggested that I write a book on "100 Ways of Writing Fizz Buzz in Python."Now, I could probably come up with 100 ways of solving Fizz Buzz, but most of them would not be very interesting. Luckily for you, I was able to come up with 10 that are interesting in various ways, each of which turned out to be a good launching-off point for (sometimes meandering) discussions of various aspects of coding, Python, Fizz Buzz, mathematics, software design, technical interviewing, and various other topics.Hence "Ten Essays on Fizz Buzz".In many ways this is a strange book. Its goal is not to teach you a specific field or a specific technology. I hope you will learn a lot from reading it, but it's not really a book that you'd read in order to learn anything in particular. Most technical books are about specific technical topics; this one sort of isn't.Nonetheless, it is a technical book. Each essay contains code that implements a different solution of Fizz Buzz. Each essay uses code to illustrate its ideas. Each essay represents my current best thinking about how to solve problems using code. If you have a coding job, you should feel no reluctance to expense this book to your employer

Think Like a Data Scientist

Think Like a Data Scientist Book
Author : Brian Godsey
Publisher : Simon and Schuster
Release : 2017-03-09
ISBN : 1638355207
Language : En, Es, Fr & De

DOWNLOAD

Book Description :

Summary Think Like a Data Scientist presents a step-by-step approach to data science, combining analytic, programming, and business perspectives into easy-to-digest techniques and thought processes for solving real world data-centric problems. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Data collected from customers, scientific measurements, IoT sensors, and so on is valuable only if you understand it. Data scientists revel in the interesting and rewarding challenge of observing, exploring, analyzing, and interpreting this data. Getting started with data science means more than mastering analytic tools and techniques, however; the real magic happens when you begin to think like a data scientist. This book will get you there. About the Book Think Like a Data Scientist teaches you a step-by-step approach to solving real-world data-centric problems. By breaking down carefully crafted examples, you'll learn to combine analytic, programming, and business perspectives into a repeatable process for extracting real knowledge from data. As you read, you'll discover (or remember) valuable statistical techniques and explore powerful data science software. More importantly, you'll put this knowledge together using a structured process for data science. When you've finished, you'll have a strong foundation for a lifetime of data science learning and practice. What's Inside The data science process, step-by-step How to anticipate problems Dealing with uncertainty Best practices in software and scientific thinking About the Reader Readers need beginner programming skills and knowledge of basic statistics. About the Author Brian Godsey has worked in software, academia, finance, and defense and has launched several data-centric start-ups. Table of Contents PART 1 - PREPARING AND GATHERING DATA AND KNOWLEDGE Philosophies of data science Setting goals by asking good questions Data all around us: the virtual wilderness Data wrangling: from capture to domestication Data assessment: poking and prodding PART 2 - BUILDING A PRODUCT WITH SOFTWARE AND STATISTICS Developing a plan Statistics and modeling: concepts and foundations Software: statistics in action Supplementary software: bigger, faster, more efficient Plan execution: putting it all together PART 3 - FINISHING OFF THE PRODUCT AND WRAPPING UP Delivering a product After product delivery: problems and revisions Wrapping up: putting the project away