Skip to main content

Data Mining For Business Analytics

Download Data Mining For Business Analytics Full eBooks in PDF, EPUB, and kindle. Data Mining For Business Analytics is one my favorite book and give us some inspiration, very enjoy to read. you could read this book anywhere anytime directly from your device. This site is like a library, Use search box in the widget to get ebook that you want.

Data Mining for Business Analytics

Data Mining for Business Analytics Book
Author : Galit Shmueli,Peter C. Bruce,Peter Gedeck,Nitin R. Patel
Publisher : John Wiley & Sons
Release : 2019-10-14
ISBN : 111954985X
File Size : 32,5 Mb
Language : En, Es, Fr and De

DOWNLOAD

Book Summary :

Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R

Data Mining for Business Analytics

Data Mining for Business Analytics Book
Author : Galit Shmueli,Peter C. Bruce,Nitin R. Patel
Publisher : John Wiley & Sons
Release : 2016-04-18
ISBN : 1118729277
File Size : 53,5 Mb
Language : En, Es, Fr and De

DOWNLOAD

Book Summary :

An applied approach to data mining and predictive analytics with clear exposition, hands-on exercises, and real-life case studies. Readers will work with all of the standard data mining methods using the Microsoft® Office Excel® add-in XLMiner® to develop predictive models and learn how to obtain business value from Big Data. Featuring updated topical coverage on text mining, social network analysis, collaborative filtering, ensemble methods, uplift modeling and more, the Third Edition also includes: Real-world examples to build a theoretical and practical understanding of key data mining methods End-of-chapter exercises that help readers better understand the presented material Data-rich case studies to illustrate various applications of data mining techniques Completely new chapters on social network analysis and text mining A companion site with additional data sets, instructors material that include solutions to exercises and case studies, and Microsoft PowerPoint® slides https://www.dataminingbook.com Free 140-day license to use XLMiner for Education software Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses as well as professional programs on data mining, predictive modeling, and Big Data analytics. The new edition is also a unique reference for analysts, researchers, and practitioners working with predictive analytics in the fields of business, finance, marketing, computer science, and information technology. Praise for the Second Edition "…full of vivid and thought-provoking anecdotes... needs to be read by anyone with a serious interest in research and marketing."– Research Magazine "Shmueli et al. have done a wonderful job in presenting the field of data mining - a welcome addition to the literature." – ComputingReviews.com "Excellent choice for business analysts...The book is a perfect fit for its intended audience." – Keith McCormick, Consultant and Author of SPSS Statistics For Dummies, Third Edition and SPSS Statistics for Data Analysis and Visualization Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, The Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 journal articles, books, textbooks and book chapters. Peter C. Bruce is President and Founder of the Institute for Statistics Education at www.statistics.com. He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective, also published by Wiley. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American Statistical Association, Dr. Patel has also served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad for 15 years.

Data Mining and Business Analytics with R

Data Mining and Business Analytics with R Book
Author : Johannes Ledolter
Publisher : John Wiley & Sons
Release : 2013-05-28
ISBN : 1118572157
File Size : 35,7 Mb
Language : En, Es, Fr and De

DOWNLOAD

Book Summary :

Collecting, analyzing, and extracting valuable information froma large amount of data requires easily accessible, robust,computational and analytical tools. Data Mining and BusinessAnalytics with R utilizes the open source software R for theanalysis, exploration, and simplification of large high-dimensionaldata sets. As a result, readers are provided with the neededguidance to model and interpret complicated data and become adeptat building powerful models for prediction and classification. Highlighting both underlying concepts and practicalcomputational skills, Data Mining and Business Analytics withR begins with coverage of standard linear regression and theimportance of parsimony in statistical modeling. The book includesimportant topics such as penalty-based variable selection (LASSO);logistic regression; regression and classification trees;clustering; principal components and partial least squares; and theanalysis of text and network data. In addition, the bookpresents: • A thorough discussion and extensive demonstration of thetheory behind the most useful data mining tools • Illustrations of how to use the outlined concepts inreal-world situations • Readily available additional data sets and related Rcode allowing readers to apply their own analyses to the discussedmaterials • Numerous exercises to help readers with computing skillsand deepen their understanding of the material Data Mining and Business Analytics with R is an excellentgraduate-level textbook for courses on data mining and businessanalytics. The book is also a valuable reference for practitionerswho collect and analyze data in the fields of finance, operationsmanagement, marketing, and the information sciences.

Customer and Business Analytics

Customer and Business Analytics Book
Author : Daniel S. Putler,Robert E. Krider
Publisher : CRC Press
Release : 2015-09-15
ISBN : 149875970X
File Size : 27,9 Mb
Language : En, Es, Fr and De

DOWNLOAD

Book Summary :

Customer and Business Analytics: Applied Data Mining for Business Decision Making Using R explains and demonstrates, via the accompanying open-source software, how advanced analytical tools can address various business problems. It also gives insight into some of the challenges faced when deploying these tools. Extensively classroom-tested, the text is ideal for students in customer and business analytics or applied data mining as well as professionals in small- to medium-sized organizations. The book offers an intuitive understanding of how different analytics algorithms work. Where necessary, the authors explain the underlying mathematics in an accessible manner. Each technique presented includes a detailed tutorial that enables hands-on experience with real data. The authors also discuss issues often encountered in applied data mining projects and present the CRISP-DM process model as a practical framework for organizing these projects. Showing how data mining can improve the performance of organizations, this book and its R-based software provide the skills and tools needed to successfully develop advanced analytics capabilities.

Data Mining for Business Intelligence

Data Mining for Business Intelligence Book
Author : Galit Shmueli,Nitin R. Patel,Peter C. Bruce
Publisher : John Wiley & Sons
Release : 2006-12-11
ISBN : 0470084855
File Size : 53,9 Mb
Language : En, Es, Fr and De

DOWNLOAD

Book Summary :

Learn how to develop models for classification, prediction, and customer segmentation with the help of Data Mining for Business Intelligence In today's world, businesses are becoming more capable of accessing their ideal consumers, and an understanding of data mining contributes to this success. Data Mining for Business Intelligence, which was developed from a course taught at the Massachusetts Institute of Technology's Sloan School of Management, and the University of Maryland's Smith School of Business, uses real data and actual cases to illustrate the applicability of data mining intelligence to the development of successful business models. Featuring XLMiner, the Microsoft Office Excel add-in, this book allows readers to follow along and implement algorithms at their own speed, with a minimal learning curve. In addition, students and practitioners of data mining techniques are presented with hands-on, business-oriented applications. An abundant amount of exercises and examples are provided to motivate learning and understanding. Data Mining for Business Intelligence: Provides both a theoretical and practical understanding of the key methods of classification, prediction, reduction, exploration, and affinity analysis Features a business decision-making context for these key methods Illustrates the application and interpretation of these methods using real business cases and data This book helps readers understand the beneficial relationship that can be established between data mining and smart business practices, and is an excellent learning tool for creating valuable strategies and making wiser business decisions.

Business Intelligence and Data Mining

Business Intelligence and Data Mining Book
Author : Anil Maheshwari
Publisher : Business Expert Press
Release : 2014-12-31
ISBN : 1631571214
File Size : 32,7 Mb
Language : En, Es, Fr and De

DOWNLOAD

Book Summary :

“This book is a splendid and valuable addition to this subject. The whole book is well written and I have no hesitation to recommend that this can be adapted as a textbook for graduate courses in Business Intelligence and Data Mining.” Dr. Edi Shivaji, Des Moines, Iowa “As a complete novice to this area just starting out on a MBA course I found the book incredibly useful and very easy to follow and understand. The concepts are clearly explained and make it an easy task to gain an understanding of the subject matter.” -- Mr. Craig Domoney, South Africa. Business Intelligence and Data Mining is a conversational and informative book in the exploding area of Business Analytics. Using this book, one can easily gain the intuition about the area, along with a solid toolset of major data mining techniques and platforms. This book can thus be gainfully used as a textbook for a college course. It is also short and accessible enough for a busy executive to become a quasi-expert in this area in a couple of hours. Every chapter begins with a case-let from the real world, and ends with a case study that runs across the chapters.

Business Intelligence

Business Intelligence Book
Author : Carlo Vercellis
Publisher : John Wiley & Sons
Release : 2011-08-10
ISBN : 1119965470
File Size : 27,7 Mb
Language : En, Es, Fr and De

DOWNLOAD

Book Summary :

Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made. Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence. This book: Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence. Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation. Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies. Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions. This book is aimed at postgraduate students following data analysis and data mining courses. Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.

Data Science for Business

Data Science for Business Book
Author : Foster Provost,Tom Fawcett
Publisher : "O'Reilly Media, Inc."
Release : 2013-07-27
ISBN : 144937428X
File Size : 33,5 Mb
Language : En, Es, Fr and De

DOWNLOAD

Book Summary :

Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates