Skip to main content

Building The Data Lakehouse

Download Building The Data Lakehouse Full eBooks in PDF, EPUB, and kindle. Building The Data Lakehouse is one my favorite book and give us some inspiration, very enjoy to read. you could read this book anywhere anytime directly from your device. This site is like a library, Use search box in the widget to get ebook that you want.

Building the Data Lakehouse

Building the Data Lakehouse Book
Author : Bill Inmon,Ranjeet Srivastava,Mary Levins
Publisher : Technics Publications
Release : 2021-10
ISBN : 9781634629669
File Size : 36,5 Mb
Language : En, Es, Fr and De

DOWNLOAD

Building the Data Lakehouse Book PDF/Epub Download

The data lakehouse is the next generation of the data warehouse and data lake, designed to meet today's complex and ever-changing analytics, machine learning, and data science requirements. Learn about the features and architecture of the data lakehouse, along with its powerful analytical infrastructure. Appreciate how the universal common connector blends structured, textual, analog, and IoT data. Maintain the lakehouse for future generations through Data Lakehouse Housekeeping and Data Future-proofing. Know how to incorporate the lakehouse into an existing data governance strategy. Incorporate data catalogs, data lineage tools, and open source software into your architecture to ensure your data scientists, analysts, and end users live happily ever after.

Data Engineering with Apache Spark Delta Lake and Lakehouse

Data Engineering with Apache Spark  Delta Lake  and Lakehouse Book
Author : Manoj Kukreja,Danil Zburivsky
Publisher : Packt Publishing Ltd
Release : 2021-10-22
ISBN : 1801074321
File Size : 47,5 Mb
Language : En, Es, Fr and De

DOWNLOAD

Data Engineering with Apache Spark Delta Lake and Lakehouse Book PDF/Epub Download

Understand the complexities of modern-day data engineering platforms and explore strategies to deal with them with the help of use case scenarios led by an industry expert in big data Key Features Become well-versed with the core concepts of Apache Spark and Delta Lake for building data platforms Learn how to ingest, process, and analyze data that can be later used for training machine learning models Understand how to operationalize data models in production using curated data Book Description In the world of ever-changing data and schemas, it is important to build data pipelines that can auto-adjust to changes. This book will help you build scalable data platforms that managers, data scientists, and data analysts can rely on. Starting with an introduction to data engineering, along with its key concepts and architectures, this book will show you how to use Microsoft Azure Cloud services effectively for data engineering. You'll cover data lake design patterns and the different stages through which the data needs to flow in a typical data lake. Once you've explored the main features of Delta Lake to build data lakes with fast performance and governance in mind, you'll advance to implementing the lambda architecture using Delta Lake. Packed with practical examples and code snippets, this book takes you through real-world examples based on production scenarios faced by the author in his 10 years of experience working with big data. Finally, you'll cover data lake deployment strategies that play an important role in provisioning the cloud resources and deploying the data pipelines in a repeatable and continuous way. By the end of this data engineering book, you'll know how to effectively deal with ever-changing data and create scalable data pipelines to streamline data science, ML, and artificial intelligence (AI) tasks. What you will learn Discover the challenges you may face in the data engineering world Add ACID transactions to Apache Spark using Delta Lake Understand effective design strategies to build enterprise-grade data lakes Explore architectural and design patterns for building efficient data ingestion pipelines Orchestrate a data pipeline for preprocessing data using Apache Spark and Delta Lake APIs Automate deployment and monitoring of data pipelines in production Get to grips with securing, monitoring, and managing data pipelines models efficiently Who this book is for This book is for aspiring data engineers and data analysts who are new to the world of data engineering and are looking for a practical guide to building scalable data platforms. If you already work with PySpark and want to use Delta Lake for data engineering, you'll find this book useful. Basic knowledge of Python, Spark, and SQL is expected.

Data Lake Architecture

Data Lake Architecture Book
Author : Bill Inmon
Publisher : Technics Publications
Release : 2016-04-01
ISBN : 1634621190
File Size : 25,6 Mb
Language : En, Es, Fr and De

DOWNLOAD

Data Lake Architecture Book PDF/Epub Download

Organizations invest incredible amounts of time and money obtaining and then storing big data in data stores called data lakes. But how many of these organizations can actually get the data back out in a useable form? Very few can turn the data lake into an information gold mine. Most wind up with garbage dumps. Data Lake Architecture will explain how to build a useful data lake, where data scientists and data analysts can solve business challenges and identify new business opportunities. Learn how to structure data lakes as well as analog, application, and text-based data ponds to provide maximum business value. Understand the role of the raw data pond and when to use an archival data pond. Leverage the four key ingredients for data lake success: metadata, integration mapping, context, and metaprocess. Bill Inmon opened our eyes to the architecture and benefits of a data warehouse, and now he takes us to the next level of data lake architecture.

The Unified Star Schema An Agile and Resilient Approach to Data Warehouse and Analytics Design

The Unified Star Schema  An Agile and Resilient Approach to Data Warehouse and Analytics Design Book
Author : Bill Inmon,Francesco Puppini
Publisher : Technics Publications
Release : 2020-10-03
ISBN : 1634628896
File Size : 53,8 Mb
Language : En, Es, Fr and De

DOWNLOAD

The Unified Star Schema An Agile and Resilient Approach to Data Warehouse and Analytics Design Book PDF/Epub Download

Master the most agile and resilient design for building analytics applications: the Unified Star Schema (USS) approach. The USS has many benefits over traditional dimensional modeling. Witness the power of the USS as a single star schema that serves as a foundation for all present and future business requirements of your organization. Data warehouse legend Bill Inmon and business intelligence innovator, Francesco Puppini, explain step-by-step why the Unified Star Schema is the recommended approach for business intelligence designs today, and show through many examples how to build and use this new solution. This book contains two parts. Part I, Architecture, explains the benefits of data marts and data warehouses, covering how organizations progressed to their current state of analytics, and to the challenges that result from current business intelligence architectures. Chapter 1 covers the drivers behind and the characteristics of the data warehouse and data mart. Chapter 2 introduces dimensional modeling concepts, including fact tables, dimensions, star joins, and snowflakes. Chapter 3 recalls the evolution of the data mart. Chapter 4 explains Extract, Transform, and Load (ETL), and the value ETL brings to reporting. Chapter 5 explores the Integrated Data Mart Approach, and Chapter 6 explains how to monitor this environment. Chapter 7 describes the different types of metadata within the data warehouse environment. Chapter 8 progresses through the evolution to our current modern data warehouse environment. Part II, the Unified Star Schema, covers the Unified Star Schema (USS) approach and how it solves the challenges introduced in Part I. There are eight chapters within Part II: · Chapter 9, Introduction to the Unified Star Schema: Learn about its architecture and use cases, as well as how the USS approach differs from the traditional approach. · Chapter 10, Loss of Data: Learn about the loss of data and the USS Bridge. Understand that the USS approach does not create any join, and for this reason, it has no loss of data. · Chapter 11, The Fan Trap: Get introduced to the Oriented Data Model convention, and learn the dangers of a fan trap through an example. Differentiate join and association, and realize that an “in-memory association” is the preferred solution to the fan trap. · Chapter 12, The Chasm Trap: Become familiar with the Cartesian product, and then follow along with an example based on LinkedIn, which illustrates that a chasm trap produces unwanted duplicates. See that the USS Bridge is based on a union, which does not create any duplicates. · Chapter 13, Multi-Fact Queries: Distinguish between multiple facts “with direct connection” versus multiple facts “with no direct connection”. Explore how BI tools are capable of building aggregated virtual rows. · Chapter 14, Loops: Learn more about loops and five traditional techniques to solve them. Follow along with an implementation, which will illustrate the solution based on the USS approach. · Chapter 15, Non-Conformed Granularities: Learn about non-conformed granularities, and learn that the Unified Star Schema introduces a solution called “re-normalization”. · Chapter 16, Northwind Case Study. Witness how easy it is to detect the pitfalls of Northwind using the ODM convention. Follow along with an implementation of the USS approach on the Northwind database with various BI tools.

Data Lakes For Dummies

Data Lakes For Dummies Book
Author : Alan R. Simon
Publisher : John Wiley & Sons
Release : 2021-07-14
ISBN : 1119786169
File Size : 22,9 Mb
Language : En, Es, Fr and De

DOWNLOAD

Data Lakes For Dummies Book PDF/Epub Download

Take a dive into data lakes “Data lakes” is the latest buzz word in the world of data storage, management, and analysis. Data Lakes For Dummies decodes and demystifies the concept and helps you get a straightforward answer the question: “What exactly is a data lake and do I need one for my business?” Written for an audience of technology decision makers tasked with keeping up with the latest and greatest data options, this book provides the perfect introductory survey of these novel and growing features of the information landscape. It explains how they can help your business, what they can (and can’t) achieve, and what you need to do to create the lake that best suits your particular needs. With a minimum of jargon, prolific tech author and business intelligence consultant Alan Simon explains how data lakes differ from other data storage paradigms. Once you’ve got the background picture, he maps out ways you can add a data lake to your business systems; migrate existing information and switch on the fresh data supply; clean up the product; and open channels to the best intelligence software for to interpreting what you’ve stored. Understand and build data lake architecture Store, clean, and synchronize new and existing data Compare the best data lake vendors Structure raw data and produce usable analytics Whatever your business, data lakes are going to form ever more prominent parts of the information universe every business should have access to. Dive into this book to start exploring the deep competitive advantage they make possible—and make sure your business isn’t left standing on the shore.

Building the Data Warehouse

Building the Data Warehouse Book
Author : W. H. Inmon
Publisher : John Wiley & Sons
Release : 2002-10-01
ISBN : 0471270482
File Size : 51,7 Mb
Language : En, Es, Fr and De

DOWNLOAD

Building the Data Warehouse Book PDF/Epub Download

The data warehousing bible updated for the new millennium Updated and expanded to reflect the many technological advances occurring since the previous edition, this latest edition of the data warehousing "bible" provides a comprehensive introduction to building data marts, operational data stores, the Corporate Information Factory, exploration warehouses, and Web-enabled warehouses. Written by the father of the data warehouse concept, the book also reviews the unique requirements for supporting e-business and explores various ways in which the traditional data warehouse can be integrated with new technologies to provide enhanced customer service, sales, and support-both online and offline-including near-line data storage techniques.

The Enterprise Big Data Lake

The Enterprise Big Data Lake Book
Author : Alex Gorelik
Publisher : "O'Reilly Media, Inc."
Release : 2019-02-21
ISBN : 1491931507
File Size : 30,6 Mb
Language : En, Es, Fr and De

DOWNLOAD

The Enterprise Big Data Lake Book PDF/Epub Download

The data lake is a daring new approach for harnessing the power of big data technology and providing convenient self-service capabilities. But is it right for your company? This book is based on discussions with practitioners and executives from more than a hundred organizations, ranging from data-driven companies such as Google, LinkedIn, and Facebook, to governments and traditional corporate enterprises. You’ll learn what a data lake is, why enterprises need one, and how to build one successfully with the best practices in this book. Alex Gorelik, CTO and founder of Waterline Data, explains why old systems and processes can no longer support data needs in the enterprise. Then, in a collection of essays about data lake implementation, you’ll examine data lake initiatives, analytic projects, experiences, and best practices from data experts working in various industries. Get a succinct introduction to data warehousing, big data, and data science Learn various paths enterprises take to build a data lake Explore how to build a self-service model and best practices for providing analysts access to the data Use different methods for architecting your data lake Discover ways to implement a data lake from experts in different industries

Data Mesh

Data Mesh Book
Author : Zhamak Dehghani
Publisher : "O'Reilly Media, Inc."
Release : 2022-03-08
ISBN : 1492092347
File Size : 49,5 Mb
Language : En, Es, Fr and De

DOWNLOAD

Data Mesh Book PDF/Epub Download

We're at an inflection point in data, where our data management solutions no longer match the complexity of organizations, the proliferation of data sources, and the scope of our aspirations to get value from data with AI and analytics. In this practical book, author Zhamak Dehghani introduces data mesh, a decentralized sociotechnical paradigm drawn from modern distributed architecture that provides a new approach to sourcing, sharing, accessing, and managing analytical data at scale. Dehghani guides practitioners, architects, technical leaders, and decision makers on their journey from traditional big data architecture to a distributed and multidimensional approach to analytical data management. Data mesh treats data as a product, considers domains as a primary concern, applies platform thinking to create self-serve data infrastructure, and introduces a federated computational model of data governance. Get a complete introduction to data mesh principles and its constituents Design a data mesh architecture Guide a data mesh strategy and execution Navigate organizational design to a decentralized data ownership model Move beyond traditional data warehouses and lakes to a distributed data mesh

Data Lake for Enterprises

Data Lake for Enterprises Book
Author : Tomcy John,Pankaj Misra
Publisher : Packt Publishing Ltd
Release : 2017-05-31
ISBN : 1787282651
File Size : 30,5 Mb
Language : En, Es, Fr and De

DOWNLOAD

Data Lake for Enterprises Book PDF/Epub Download

A practical guide to implementing your enterprise data lake using Lambda Architecture as the base About This Book Build a full-fledged data lake for your organization with popular big data technologies using the Lambda architecture as the base Delve into the big data technologies required to meet modern day business strategies A highly practical guide to implementing enterprise data lakes with lots of examples and real-world use-cases Who This Book Is For Java developers and architects who would like to implement a data lake for their enterprise will find this book useful. If you want to get hands-on experience with the Lambda Architecture and big data technologies by implementing a practical solution using these technologies, this book will also help you. What You Will Learn Build an enterprise-level data lake using the relevant big data technologies Understand the core of the Lambda architecture and how to apply it in an enterprise Learn the technical details around Sqoop and its functionalities Integrate Kafka with Hadoop components to acquire enterprise data Use flume with streaming technologies for stream-based processing Understand stream- based processing with reference to Apache Spark Streaming Incorporate Hadoop components and know the advantages they provide for enterprise data lakes Build fast, streaming, and high-performance applications using ElasticSearch Make your data ingestion process consistent across various data formats with configurability Process your data to derive intelligence using machine learning algorithms In Detail The term "Data Lake" has recently emerged as a prominent term in the big data industry. Data scientists can make use of it in deriving meaningful insights that can be used by businesses to redefine or transform the way they operate. Lambda architecture is also emerging as one of the very eminent patterns in the big data landscape, as it not only helps to derive useful information from historical data but also correlates real-time data to enable business to take critical decisions. This book tries to bring these two important aspects — data lake and lambda architecture—together. This book is divided into three main sections. The first introduces you to the concept of data lakes, the importance of data lakes in enterprises, and getting you up-to-speed with the Lambda architecture. The second section delves into the principal components of building a data lake using the Lambda architecture. It introduces you to popular big data technologies such as Apache Hadoop, Spark, Sqoop, Flume, and ElasticSearch. The third section is a highly practical demonstration of putting it all together, and shows you how an enterprise data lake can be implemented, along with several real-world use-cases. It also shows you how other peripheral components can be added to the lake to make it more efficient. By the end of this book, you will be able to choose the right big data technologies using the lambda architectural patterns to build your enterprise data lake. Style and approach The book takes a pragmatic approach, showing ways to leverage big data technologies and lambda architecture to build an enterprise-level data lake.

Introduction to Storage Area Networks

Introduction to Storage Area Networks Book
Author : Jon Tate,Pall Beck,Hector Hugo Ibarra,Shanmuganathan Kumaravel,Libor Miklas,IBM Redbooks
Publisher : IBM Redbooks
Release : 2018-10-09
ISBN : 0738442887
File Size : 55,7 Mb
Language : En, Es, Fr and De

DOWNLOAD

Introduction to Storage Area Networks Book PDF/Epub Download

The superabundance of data that is created by today's businesses is making storage a strategic investment priority for companies of all sizes. As storage takes precedence, the following major initiatives emerge: Flatten and converge your network: IBM® takes an open, standards-based approach to implement the latest advances in the flat, converged data center network designs of today. IBM Storage solutions enable clients to deploy a high-speed, low-latency Unified Fabric Architecture. Optimize and automate virtualization: Advanced virtualization awareness reduces the cost and complexity of deploying physical and virtual data center infrastructure. Simplify management: IBM data center networks are easy to deploy, maintain, scale, and virtualize, delivering the foundation of consolidated operations for dynamic infrastructure management. Storage is no longer an afterthought. Too much is at stake. Companies are searching for more ways to efficiently manage expanding volumes of data, and to make that data accessible throughout the enterprise. This demand is propelling the move of storage into the network. Also, the increasing complexity of managing large numbers of storage devices and vast amounts of data is driving greater business value into software and services. With current estimates of the amount of data to be managed and made available increasing at 60% each year, this outlook is where a storage area network (SAN) enters the arena. SANs are the leading storage infrastructure for the global economy of today. SANs offer simplified storage management, scalability, flexibility, and availability; and improved data access, movement, and backup. Welcome to the cognitive era. The smarter data center with the improved economics of IT can be achieved by connecting servers and storage with a high-speed and intelligent network fabric. A smarter data center that hosts IBM Storage solutions can provide an environment that is smarter, faster, greener, open, and easy to manage. This IBM® Redbooks® publication provides an introduction to SAN and Ethernet networking, and how these networks help to achieve a smarter data center. This book is intended for people who are not very familiar with IT, or who are just starting out in the IT world.

Amazon Redshift Cookbook

Amazon Redshift Cookbook Book
Author : Shruti Worlikar,Thiyagarajan Arumugam,Harshida Patel,Eugene Kawamoto
Publisher : Packt Publishing Ltd
Release : 2021-07-23
ISBN : 1800561849
File Size : 34,5 Mb
Language : En, Es, Fr and De

DOWNLOAD

Amazon Redshift Cookbook Book PDF/Epub Download

Discover how to build a cloud-based data warehouse at petabyte-scale that is burstable and built to scale for end-to-end analytical solutions Key FeaturesDiscover how to translate familiar data warehousing concepts into Redshift implementationUse impressive Redshift features to optimize development, productionizing, and operations processesFind out how to use advanced features such as concurrency scaling, Redshift Spectrum, and federated queriesBook Description Amazon Redshift is a fully managed, petabyte-scale AWS cloud data warehousing service. It enables you to build new data warehouse workloads on AWS and migrate on-premises traditional data warehousing platforms to Redshift. This book on Amazon Redshift starts by focusing on Redshift architecture, showing you how to perform database administration tasks on Redshift. You'll then learn how to optimize your data warehouse to quickly execute complex analytic queries against very large datasets. Because of the massive amount of data involved in data warehousing, designing your database for analytical processing lets you take full advantage of Redshift's columnar architecture and managed services. As you advance, you'll discover how to deploy fully automated and highly scalable extract, transform, and load (ETL) processes, which help minimize the operational efforts that you have to invest in managing regular ETL pipelines and ensure the timely and accurate refreshing of your data warehouse. Finally, you'll gain a clear understanding of Redshift use cases, data ingestion, data management, security, and scaling so that you can build a scalable data warehouse platform. By the end of this Redshift book, you'll be able to implement a Redshift-based data analytics solution and have understood the best practice solutions to commonly faced problems. What you will learnUse Amazon Redshift to build petabyte-scale data warehouses that are agile at scaleIntegrate your data warehousing solution with a data lake using purpose-built features and services on AWSBuild end-to-end analytical solutions from data sourcing to consumption with the help of useful recipesLeverage Redshift's comprehensive security capabilities to meet the most demanding business requirementsFocus on architectural insights and rationale when using analytical recipesDiscover best practices for working with big data to operate a fully managed solutionWho this book is for This book is for anyone involved in architecting, implementing, and optimizing an Amazon Redshift data warehouse, such as data warehouse developers, data analysts, database administrators, data engineers, and data scientists. Basic knowledge of data warehousing, database systems, and cloud concepts and familiarity with Redshift will be beneficial.

Beginning Apache Spark Using Azure Databricks

Beginning Apache Spark Using Azure Databricks Book
Author : Robert Ilijason
Publisher : Apress
Release : 2020-06-11
ISBN : 1484257812
File Size : 28,6 Mb
Language : En, Es, Fr and De

DOWNLOAD

Beginning Apache Spark Using Azure Databricks Book PDF/Epub Download

Analyze vast amounts of data in record time using Apache Spark with Databricks in the Cloud. Learn the fundamentals, and more, of running analytics on large clusters in Azure and AWS, using Apache Spark with Databricks on top. Discover how to squeeze the most value out of your data at a mere fraction of what classical analytics solutions cost, while at the same time getting the results you need, incrementally faster. This book explains how the confluence of these pivotal technologies gives you enormous power, and cheaply, when it comes to huge datasets. You will begin by learning how cloud infrastructure makes it possible to scale your code to large amounts of processing units, without having to pay for the machinery in advance. From there you will learn how Apache Spark, an open source framework, can enable all those CPUs for data analytics use. Finally, you will see how services such as Databricks provide the power of Apache Spark, without you having to know anything about configuring hardware or software. By removing the need for expensive experts and hardware, your resources can instead be allocated to actually finding business value in the data. This book guides you through some advanced topics such as analytics in the cloud, data lakes, data ingestion, architecture, machine learning, and tools, including Apache Spark, Apache Hadoop, Apache Hive, Python, and SQL. Valuable exercises help reinforce what you have learned. What You Will Learn Discover the value of big data analytics that leverage the power of the cloudGet started with Databricks using SQL and Python in either Microsoft Azure or AWSUnderstand the underlying technology, and how the cloud and Apache Spark fit into the bigger picture See how these tools are used in the real world Run basic analytics, including machine learning, on billions of rows at a fraction of a cost or free Who This Book Is For Data engineers, data scientists, and cloud architects who want or need to run advanced analytics in the cloud. It is assumed that the reader has data experience, but perhaps minimal exposure to Apache Spark and Azure Databricks. The book is also recommended for people who want to get started in the analytics field, as it provides a strong foundation.

Beginning Azure Synapse Analytics

Beginning Azure Synapse Analytics Book
Author : Bhadresh Shiyal
Publisher : Apress
Release : 2021-09-26
ISBN : 9781484270608
File Size : 55,7 Mb
Language : En, Es, Fr and De

DOWNLOAD

Beginning Azure Synapse Analytics Book PDF/Epub Download

Get started with Azure Synapse Analytics, Microsoft's modern data analytics platform. This book covers core components such as Synapse SQL, Synapse Spark, Synapse Pipelines, and many more, along with their architecture and implementation. The book begins with an introduction to core data and analytics concepts followed by an understanding of traditional/legacy data warehouse, modern data warehouse, and the most modern data lakehouse. You will go through the introduction and background of Azure Synapse Analytics along with its main features and key service capabilities. Core architecture is discussed, along with Synapse SQL. You will learn its main features and how to create a dedicated Synapse SQL pool and analyze your big data using Serverless Synapse SQL Pool. You also will learn Synapse Spark and Synapse Pipelines, with examples. And you will learn Synapse Workspace and Synapse Studio followed by Synapse Link and its features. You will go through use cases in Azure Synapse and understand the reference architecture for Synapse Analytics. After reading this book, you will be able to work with Azure Synapse Analytics and understand its architecture, main components, features, and capabilities. What You Will Learn Understand core data and analytics concepts and data lakehouse concepts Be familiar with overall Azure Synapse architecture and its main components Be familiar with Synapse SQL and Synapse Spark architecture components Work with integrated Apache Spark (aka Synapse Spark) and Synapse SQL engines Understand Synapse Workspace, Synapse Studio, and Synapse Pipeline Study reference architecture and use cases Who This Book Is For Azure data analysts, data engineers, data scientists, and solutions architects

Limitless Analytics with Azure Synapse

Limitless Analytics with Azure Synapse Book
Author : Prashant Kumar Mishra,Mukesh Kumar
Publisher : Packt Publishing Ltd
Release : 2021-06-18
ISBN : 1800206976
File Size : 34,7 Mb
Language : En, Es, Fr and De

DOWNLOAD

Limitless Analytics with Azure Synapse Book PDF/Epub Download

Leverage the Azure analytics platform's key analytics services to deliver unmatched intelligence for your data Key FeaturesLearn to ingest, prepare, manage, and serve data for immediate business requirementsBring enterprise data warehousing and big data analytics together to gain insights from your dataDevelop end-to-end analytics solutions using Azure SynapseBook Description Azure Synapse Analytics, which Microsoft describes as the next evolution of Azure SQL Data Warehouse, is a limitless analytics service that brings enterprise data warehousing and big data analytics together. With this book, you'll learn how to discover insights from your data effectively using this platform. The book starts with an overview of Azure Synapse Analytics, its architecture, and how it can be used to improve business intelligence and machine learning capabilities. Next, you'll go on to choose and set up the correct environment for your business problem. You'll also learn a variety of ways to ingest data from various sources and orchestrate the data using transformation techniques offered by Azure Synapse. Later, you'll explore how to handle both relational and non-relational data using the SQL language. As you progress, you'll perform real-time streaming and execute data analysis operations on your data using various languages, before going on to apply ML techniques to derive accurate and granular insights from data. Finally, you'll discover how to protect sensitive data in real time by using security and privacy features. By the end of this Azure book, you'll be able to build end-to-end analytics solutions while focusing on data prep, data management, data warehousing, and AI tasks. What you will learnExplore the necessary considerations for data ingestion and orchestration while building analytical pipelinesUnderstand pipelines and activities in Synapse pipelines and use them to construct end-to-end data-driven workflowsQuery data using various coding languages on Azure SynapseFocus on Synapse SQL and Synapse SparkManage and monitor resource utilization and query activity in Azure SynapseConnect Power BI workspaces with Azure Synapse and create or modify reports directly from Synapse StudioCreate and manage IP firewall rules in Azure SynapseWho this book is for This book is for data architects, data scientists, data engineers, and business analysts who are looking to get up and running with the Azure Synapse Analytics platform. Basic knowledge of data warehousing will be beneficial to help you understand the concepts covered in this book more effectively.

Data Pipelines Pocket Reference

Data Pipelines Pocket Reference Book
Author : James Densmore
Publisher : O'Reilly Media
Release : 2021-02-10
ISBN : 1492087807
File Size : 48,9 Mb
Language : En, Es, Fr and De

DOWNLOAD

Data Pipelines Pocket Reference Book PDF/Epub Download

Data pipelines are the foundation for success in data analytics. Moving data from numerous diverse sources and transforming it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack. You'll learn common considerations and key decision points when implementing pipelines, such as batch versus streaming data ingestion and build versus buy. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions. You'll learn: What a data pipeline is and how it works How data is moved and processed on modern data infrastructure, including cloud platforms Common tools and products used by data engineers to build pipelines How pipelines support analytics and reporting needs Considerations for pipeline maintenance, testing, and alerting

Data Engineering with Python

Data Engineering with Python Book
Author : Paul Crickard
Publisher : Packt Publishing Ltd
Release : 2020-10-23
ISBN : 1839212306
File Size : 43,5 Mb
Language : En, Es, Fr and De

DOWNLOAD

Data Engineering with Python Book PDF/Epub Download

Build, monitor, and manage real-time data pipelines to create data engineering infrastructure efficiently using open-source Apache projects Key FeaturesBecome well-versed in data architectures, data preparation, and data optimization skills with the help of practical examplesDesign data models and learn how to extract, transform, and load (ETL) data using PythonSchedule, automate, and monitor complex data pipelines in productionBook Description Data engineering provides the foundation for data science and analytics, and forms an important part of all businesses. This book will help you to explore various tools and methods that are used for understanding the data engineering process using Python. The book will show you how to tackle challenges commonly faced in different aspects of data engineering. You’ll start with an introduction to the basics of data engineering, along with the technologies and frameworks required to build data pipelines to work with large datasets. You’ll learn how to transform and clean data and perform analytics to get the most out of your data. As you advance, you'll discover how to work with big data of varying complexity and production databases, and build data pipelines. Using real-world examples, you’ll build architectures on which you’ll learn how to deploy data pipelines. By the end of this Python book, you’ll have gained a clear understanding of data modeling techniques, and will be able to confidently build data engineering pipelines for tracking data, running quality checks, and making necessary changes in production. What you will learnUnderstand how data engineering supports data science workflowsDiscover how to extract data from files and databases and then clean, transform, and enrich itConfigure processors for handling different file formats as well as both relational and NoSQL databasesFind out how to implement a data pipeline and dashboard to visualize resultsUse staging and validation to check data before landing in the warehouseBuild real-time pipelines with staging areas that perform validation and handle failuresGet to grips with deploying pipelines in the production environmentWho this book is for This book is for data analysts, ETL developers, and anyone looking to get started with or transition to the field of data engineering or refresh their knowledge of data engineering using Python. This book will also be useful for students planning to build a career in data engineering or IT professionals preparing for a transition. No previous knowledge of data engineering is required.

The Data Warehouse Toolkit

The Data Warehouse Toolkit Book
Author : Ralph Kimball,Margy Ross
Publisher : John Wiley & Sons
Release : 2013-07-01
ISBN : 1118732286
File Size : 41,8 Mb
Language : En, Es, Fr and De

DOWNLOAD

The Data Warehouse Toolkit Book PDF/Epub Download

Updated new edition of Ralph Kimball's groundbreaking book ondimensional modeling for data warehousing and businessintelligence! The first edition of Ralph Kimball's The Data WarehouseToolkit introduced the industry to dimensional modeling,and now his books are considered the most authoritative guides inthis space. This new third edition is a complete library of updateddimensional modeling techniques, the most comprehensive collectionever. It covers new and enhanced star schema dimensional modelingpatterns, adds two new chapters on ETL techniques, includes new andexpanded business matrices for 12 case studies, and more. Authored by Ralph Kimball and Margy Ross, known worldwide aseducators, consultants, and influential thought leaders in datawarehousing and business intelligence Begins with fundamental design recommendations and progressesthrough increasingly complex scenarios Presents unique modeling techniques for business applicationssuch as inventory management, procurement, invoicing, accounting,customer relationship management, big data analytics, and more Draws real-world case studies from a variety of industries,including retail sales, financial services, telecommunications,education, health care, insurance, e-commerce, and more Design dimensional databases that are easy to understand andprovide fast query response with The Data WarehouseToolkit: The Definitive Guide to Dimensional Modeling, 3rdEdition.

Twitter Data Analytics

Twitter Data Analytics Book
Author : Shamanth Kumar,Fred Morstatter,Huan Liu
Publisher : Springer Science & Business Media
Release : 2013-11-11
ISBN : 1461493722
File Size : 53,9 Mb
Language : En, Es, Fr and De

DOWNLOAD

Twitter Data Analytics Book PDF/Epub Download

This brief provides methods for harnessing Twitter data to discover solutions to complex inquiries. The brief introduces the process of collecting data through Twitter’s APIs and offers strategies for curating large datasets. The text gives examples of Twitter data with real-world examples, the present challenges and complexities of building visual analytic tools, and the best strategies to address these issues. Examples demonstrate how powerful measures can be computed using various Twitter data sources. Due to its openness in sharing data, Twitter is a prime example of social media in which researchers can verify their hypotheses, and practitioners can mine interesting patterns and build their own applications. This brief is designed to provide researchers, practitioners, project managers, as well as graduate students with an entry point to jump start their Twitter endeavors. It also serves as a convenient reference for readers seasoned in Twitter data analysis.

Data Science on AWS

Data Science on AWS Book
Author : Chris Fregly,Antje Barth
Publisher : "O'Reilly Media, Inc."
Release : 2021-04-07
ISBN : 1492079367
File Size : 43,8 Mb
Language : En, Es, Fr and De

DOWNLOAD

Data Science on AWS Book PDF/Epub Download

With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level upyour skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance. Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and more Use automated machine learning to implement a specific subset of use cases with SageMaker Autopilot Dive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, model training, and deployment Tie everything together into a repeatable machine learning operations pipeline Explore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache Kafka Learn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more

97 Things Every Data Engineer Should Know

97 Things Every Data Engineer Should Know Book
Author : Tobias Macey
Publisher : "O'Reilly Media, Inc."
Release : 2021-06-11
ISBN : 1492062367
File Size : 42,8 Mb
Language : En, Es, Fr and De

DOWNLOAD

97 Things Every Data Engineer Should Know Book PDF/Epub Download

Take advantage of today's sky-high demand for data engineers. With this in-depth book, current and aspiring engineers will learn powerful real-world best practices for managing data big and small. Contributors from notable companies including Twitter, Google, Stitch Fix, Microsoft, Capital One, and LinkedIn share their experiences and lessons learned for overcoming a variety of specific and often nagging challenges. Edited by Tobias Macey, host of the popular Data Engineering Podcast, this book presents 97 concise and useful tips for cleaning, prepping, wrangling, storing, processing, and ingesting data. Data engineers, data architects, data team managers, data scientists, machine learning engineers, and software engineers will greatly benefit from the wisdom and experience of their peers. Topics include: The Importance of Data Lineage - Julien Le Dem Data Security for Data Engineers - Katharine Jarmul The Two Types of Data Engineering and Data Engineers - Jesse Anderson Six Dimensions for Picking an Analytical Data Warehouse - Gleb Mezhanskiy The End of ETL as We Know It - Paul Singman Building a Career as a Data Engineer - Vijay Kiran Modern Metadata for the Modern Data Stack - Prukalpa Sankar Your Data Tests Failed! Now What? - Sam Bail

The Informed Company

The Informed Company Book
Author : Dave Fowler,Matthew C. David
Publisher : John Wiley & Sons
Release : 2021-10-26
ISBN : 1119748003
File Size : 38,9 Mb
Language : En, Es, Fr and De

DOWNLOAD

The Informed Company Book PDF/Epub Download

Learn how to manage a modern data stack and get the most out of data in your organization! Thanks to the emergence of new technologies and the explosion of data in recent years, we need new practices for managing and getting value out of data. In the modern, data driven competitive landscape the "best guess" approach—reading blog posts here and there and patching together data practices without any real visibility—is no longer going to hack it. The Informed Company provides definitive direction on how best to leverage the modern data stack, including cloud computing, columnar storage, cloud ETL tools, and cloud BI tools. You'll learn how to work with Agile methods and set up processes that's right for your company to use your data as a key weapon for your success . . . You'll discover best practices for every stage, from querying production databases at a small startup all the way to setting up data marts for different business lines of an enterprise. In their work at Chartio, authors Fowler and David have learned that most businesspeople are almost completely self-taught when it comes to data. If they are using resources, those resources are outdated, so they're missing out on the latest cloud technologies and advances in data analytics. This book will firm up your understanding of data and bring you into the present with knowledge around what works and what doesn't. Discover the data stack strategies that are working for today's successful small, medium, and enterprise companies Learn the different Agile stages of data organization, and the right one for your team Learn how to maintain Data Lakes and Data Warehouses for effective, accessible data storage Gain the knowledge you need to architect Data Warehouses and Data Marts Understand your business's level of data sophistication and the steps you can take to get to "level up" your data The Informed Company is the definitive data book for anyone who wants to work faster and more nimbly, armed with actionable decision-making data.